VOLUME I

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 01</td>
<td>PROJECT DIRECTORY</td>
<td>3</td>
</tr>
<tr>
<td>00 01 05</td>
<td>SEALS AND SIGNATURES</td>
<td>2</td>
</tr>
<tr>
<td>00 31 00</td>
<td>AVAILABLE PROJECT INFORMATION</td>
<td>2</td>
</tr>
<tr>
<td>00 01 01</td>
<td>AGREEMENT FOR USE OF ELECTRONIC MEDIA</td>
<td>3</td>
</tr>
<tr>
<td>00 01 01</td>
<td>INFORMATION FOR BIDDERS (SC-6.12)</td>
<td>2</td>
</tr>
<tr>
<td>00 01 01</td>
<td>CONTRACTOR STATEMENT OF EXPERIENCE INSTRUCTIONS – STATE FORM SC-9.1</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF CONTRACTOR STATEMENT OF EXPERIENCE (SC-9.1)</td>
<td>2</td>
</tr>
<tr>
<td>00 01 01</td>
<td>BID (SC-6.13)</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>BID ALTERNATES FORM (SBP-6.131)</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>UNIT PRICES FORM</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>BASIS FOR BIDS – DRILLED MICROPILE CONSTRUCTION FORM</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF NOTICE TO PROCEED (SC-6.26)</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF CERTIFICATION AND AFFIDAVIT REGARDING UNAUTHORIZED IMMIGRANTS (UI-1)</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>GENERAL CONDITIONS OF THE CONTRACT (SC-6.23)</td>
<td>54</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF NOTICE OF SUBSTANTIAL COMPLETION (SBP-07)</td>
<td>2</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF NOTICE OF FINAL ACCEPTANCE (SC-6.27)</td>
<td>1</td>
</tr>
<tr>
<td>00 01 01</td>
<td>SPECIMEN OF NOTICE OF CONTRACTOR’S SETTLEMENT (SC-7.3)</td>
<td>1</td>
</tr>
</tbody>
</table>

DIVISION 01 – GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 10 00</td>
<td>SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>01 22 00</td>
<td>UNIT PRICES</td>
<td>3</td>
</tr>
<tr>
<td>01 23 00</td>
<td>ALTERNATES</td>
<td>2</td>
</tr>
<tr>
<td>01 25 00</td>
<td>SUBSTITUTION PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>01 25 00</td>
<td>SUBSTITUTE REQUEST FORM – CSI FORM 1.5C</td>
<td>1</td>
</tr>
<tr>
<td>01 26 00</td>
<td>CONTRACT MODIFICATION PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>01 26 00</td>
<td>SPECIMEN OF CHANGE ORDER – (SC 6.31)</td>
<td>1</td>
</tr>
<tr>
<td>01 26 00</td>
<td>SPECIMEN OF CHANGE ORDER BULLETIN (SC 6.311)</td>
<td>1</td>
</tr>
<tr>
<td>01 26 00</td>
<td>SPECIMEN OF CHANGE ORDER PROPOSAL (SC 6.312)</td>
<td>2</td>
</tr>
<tr>
<td>01 29 00</td>
<td>PAYMENT PROCEDURES</td>
<td>5</td>
</tr>
<tr>
<td>01 31 00</td>
<td>SPECIMEN OF CERTIFICATE FOR CONTRACTOR’S PAYMENT (SBP-7.2)</td>
<td>1</td>
</tr>
<tr>
<td>01 32 00</td>
<td>PROJECT MANAGEMENT AND COORDINATION</td>
<td>10</td>
</tr>
<tr>
<td>01 32 00</td>
<td>CONSTRUCTION PROGRESS DOCUMENTATION</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

TOC - 1
TABLE OF CONTENTS

TOC - 2

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 32 33</td>
<td>PHOTOGRAPHIC DOCUMENTATION</td>
<td>3</td>
</tr>
<tr>
<td>01 33 00</td>
<td>SUBMITTAL PROCEDURES</td>
<td>12</td>
</tr>
<tr>
<td>01 35 43</td>
<td>HAZARDOUS MATERIALS AND SAFETY REQUIREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>01 40 00</td>
<td>QUALITY REQUIREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>01 42 00</td>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>01 42 16</td>
<td>DEFINITIONS AND CONVENTIONS</td>
<td>4</td>
</tr>
<tr>
<td>01 50 00</td>
<td>TEMPORARY FACILITIES AND CONTROLS</td>
<td>12</td>
</tr>
<tr>
<td>01 56 39</td>
<td>TEMPORARY TREE AND PLANT PROTECTION</td>
<td>6</td>
</tr>
<tr>
<td>01 57 60</td>
<td>SITE DUST CONTROL</td>
<td>2</td>
</tr>
<tr>
<td>01 60 00</td>
<td>PRODUCT REQUIREMENTS</td>
<td>5</td>
</tr>
<tr>
<td>01 61 10</td>
<td>ENVIRONMENTAL REQUIREMENTS FOR PRODUCTS</td>
<td>6</td>
</tr>
<tr>
<td>01 73 00</td>
<td>EXECUTION</td>
<td>8</td>
</tr>
<tr>
<td>01 73 29</td>
<td>CUTTING AND PATCHING</td>
<td>7</td>
</tr>
<tr>
<td>01 74 15</td>
<td>CONSTRUCTION AND FINAL CLEANING</td>
<td>4</td>
</tr>
<tr>
<td>01 74 19</td>
<td>CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL</td>
<td>9</td>
</tr>
<tr>
<td>01 74 19</td>
<td>CONSTRUCTION WASTE IDENTIFICATION, FORM CWM-1</td>
<td>1</td>
</tr>
<tr>
<td>01 74 19</td>
<td>DEMOLITION WASTE IDENTIFICATION, FORM CWM-2</td>
<td>1</td>
</tr>
<tr>
<td>01 74 19</td>
<td>CONSTRUCTION WASTE REDUCTION WORK PLAN, FORM CWM-3</td>
<td>1</td>
</tr>
<tr>
<td>01 74 19</td>
<td>DEMOLITION WASTE REDUCTION WORK PLAN, FORM CWM-4</td>
<td>1</td>
</tr>
<tr>
<td>01 74 19</td>
<td>COST/REVENUE ANALYSIS OF CONSTRUCTION WASTE REDUCTION WORK PLAN, FORM CWM-5</td>
<td>1</td>
</tr>
<tr>
<td>01 74 19</td>
<td>COST/REVENUE ANALYSIS OF DEMOLITION WASTE REDUCTION WORK PLAN, FORM CWM-6</td>
<td>1</td>
</tr>
<tr>
<td>01 77 00</td>
<td>CLOSEOUT PROCEDURES</td>
<td>5</td>
</tr>
<tr>
<td>01 78 23</td>
<td>OPERATION AND MAINTENANCE DATA</td>
<td>8</td>
</tr>
<tr>
<td>01 78 39</td>
<td>PROJECT RECORD DOCUMENTS</td>
<td>4</td>
</tr>
<tr>
<td>01 79 00</td>
<td>DEMONSTRATION AND TRAINING</td>
<td>5</td>
</tr>
<tr>
<td>01 81 09</td>
<td>TESTING FOR INDOOR AIR QUALITY</td>
<td>4</td>
</tr>
<tr>
<td>01 81 13</td>
<td>SUSTAINABLE DESIGN REQUIREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>01 81 14</td>
<td>LEED SCORECARD</td>
<td>1</td>
</tr>
<tr>
<td>01 81 14</td>
<td>LEED-NC V2.2 - MATERIAL/PRODUCT SUBMITTAL FORM</td>
<td>2</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE - MR CREDIT 3.1/3.2: MATERIALS REUSE</td>
<td>4</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – MR CREDIT 4.1/4.2: RECYCLED CONTENT</td>
<td>5</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – MR CREDIT 5: REGIONAL MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – MR CREDIT 6: RAPIDLY RENEWABLE MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – MR CREDIT 7: CERTIFIED WOOD</td>
<td>5</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – MR CREDIT 2.1/2.1: CONSTRUCTION WASTE MANAGEMENT</td>
<td>5</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – EQ CREDIT 4.2: LOW-EMITTING MATERIALS: PAINTS & COATINGS</td>
<td>6</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – EQ CREDIT 4.3: LOW-EMITTING MATERIALS: CARPET SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – COMPOSITE WOOD AND AGRIFIBER PRODUCTS</td>
<td>3</td>
</tr>
<tr>
<td>01 81 14</td>
<td>SAMPLE – EQ CREDIT 4.1: LOW-EMITTING MATERIALS: ADHESIVES & SEALANTS</td>
<td>7</td>
</tr>
<tr>
<td>01 81 19</td>
<td>CONSTRUCTION INDOOR AIR QUALITY MANAGEMENT</td>
<td>9</td>
</tr>
</tbody>
</table>
DIVISION 01 – GENERAL REQUIREMENTS (continued)
01 91 00 COMMISSIONING ... 13

VOLUME II

DIVISION 02 – EXISTING CONDITIONS
02 41 19 SELECTIVE STRUCTURE DEMOLITION .. 7

DIVISION 03 – CONCRETE
03 01 30 CLEANING OF EXISTING CONCRETE .. 4
03 30 00 CAST-IN-PLACE CONCRETE ... 24
03 35 20 DECORATIVE CONCRETE FLOOR FINISH 13
03 60 00 GROUT ... 2

DIVISION 04 – MASONRY
04 20 00 UNIT MASONRY .. 8

DIVISION 05 – METALS
05 12 00 STRUCTURAL STEEL FRAMING .. 14
05 31 00 STEEL DECKING ... 8
05 40 00 COLD-FORMED METAL FRAMING .. 9
05 50 00 METAL FABRICATIONS .. 9
05 52 13 PIPE AND TUBE RAILINGS ... 8

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES
06 06 60 PLASTIC FABRICATIONS .. 8
06 10 00 ROUGH CARPENTRY .. 7
06 40 23 INTERIOR ARCHITECTURAL WOODWORK 16
06 61 40 COMPOSITE SURFACING .. 6

DIVISION 07 – THERMAL AND MOISTURE PROTECTION
07 11 13 BITUMINOUS DAMPPROOFING .. 4
07 13 53 ELASTOMERIC SHEET WATERPROOFING 6
07 19 00 WATER REPELLENTS .. 5
07 21 00 THERMAL INSULATION ... 7
07 26 00 UNDERSLAB VAPOR RETARDER .. 3
07 42 43 COMPOSITE WALL PANELS ... 12
07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING 12
07 62 00 SHEET METAL FLASHING AND TRIM .. 12
07 71 29 MANUFACTURED ROOF EXPANSION JOINTS 5
07 72 00 ROOF ACCESSORIES ... 6
07 81 00 APPLIED FIREPROOFING .. 10
07 84 13 PENETRATION FIRESTOPPING .. 7
07 84 46 FIRE-RESISTIVE JOINT SYSTEMS ... 5
07 92 00 JOINT SEALANTS .. 11
07 95 00 EXPANSION CONTROL ... 9

TABLE OF CONTENTS
TOC - 3
DIVISION 08 – OPENINGS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 11 13</td>
<td>HOLLOW METAL DOORS AND FRAMES</td>
<td>10</td>
</tr>
<tr>
<td>08 14 16</td>
<td>FLUSH WOOD DOORS</td>
<td>7</td>
</tr>
<tr>
<td>08 31 13</td>
<td>ACCESS DOORS AND FRAMES</td>
<td>4</td>
</tr>
<tr>
<td>08 41 13</td>
<td>ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS</td>
<td>13</td>
</tr>
<tr>
<td>08 41 26</td>
<td>ALL-GLASS ENTRANCES</td>
<td>6</td>
</tr>
<tr>
<td>08 44 13</td>
<td>GLAZED ALUMINUM CURTAIN WALLS</td>
<td>12</td>
</tr>
<tr>
<td>08 71 00</td>
<td>DOOR HARDWARE</td>
<td>44</td>
</tr>
<tr>
<td>08 80 00</td>
<td>GLAZING</td>
<td>16</td>
</tr>
<tr>
<td>08 88 10</td>
<td>FIRE RATED GLASS AND FRAMING</td>
<td>5</td>
</tr>
<tr>
<td>08 90 00</td>
<td>LOUVERS AND VENTS</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 09 – FINISHES

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 21 15</td>
<td>GYPSUM BOARD SHAFT WALL ASSEMBLIES</td>
<td>6</td>
</tr>
<tr>
<td>09 22 16</td>
<td>NON-STRUCTURAL METAL FRAMING</td>
<td>7</td>
</tr>
<tr>
<td>09 29 00</td>
<td>GYPSUM BOARD</td>
<td>9</td>
</tr>
<tr>
<td>09 30 00</td>
<td>TILING</td>
<td>11</td>
</tr>
<tr>
<td>09 51 13</td>
<td>WOOD ACOUSTICAL WALL AND CEILING PANELS</td>
<td>6</td>
</tr>
<tr>
<td>09 51 15</td>
<td>ABSORPTIVE PANEL ACOUSTICAL CEILINGS</td>
<td>7</td>
</tr>
<tr>
<td>09 51 23</td>
<td>ACOUSTICAL TILE CEILINGS</td>
<td>9</td>
</tr>
<tr>
<td>09 51 33</td>
<td>METAL PANEL SOFFIT SYSTEM</td>
<td>6</td>
</tr>
<tr>
<td>09 53 13</td>
<td>CURVED PROFILE CEILING SUSPENSION SYSTEMS</td>
<td>6</td>
</tr>
<tr>
<td>09 65 13</td>
<td>RESILIENT BASE AND ACCESSORIES</td>
<td>7</td>
</tr>
<tr>
<td>09 65 17</td>
<td>LINOLEUM FLOORING</td>
<td>6</td>
</tr>
<tr>
<td>09 66 13</td>
<td>RESTORATION OF PORTLAND CEMENT TERRAZZO</td>
<td>6</td>
</tr>
<tr>
<td>09 68 13</td>
<td>TILE CARPETING</td>
<td>7</td>
</tr>
<tr>
<td>09 75 00</td>
<td>STONE FACING</td>
<td>9</td>
</tr>
<tr>
<td>09 77 00</td>
<td>FIBERGLASS REINFORCED PANELS</td>
<td>4</td>
</tr>
<tr>
<td>09 79 00</td>
<td>GRILLE CLOTH</td>
<td>5</td>
</tr>
<tr>
<td>09 84 10</td>
<td>FABRIC WRAPPED TACKABLE WALL PANELS</td>
<td>6</td>
</tr>
<tr>
<td>09 84 33</td>
<td>SOUND-ABSORBING WALL UNITS</td>
<td>7</td>
</tr>
<tr>
<td>09 91 00</td>
<td>PAINTING</td>
<td>13</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 11 00</td>
<td>VISUAL DISPLAY SURFACES</td>
<td>6</td>
</tr>
<tr>
<td>10 14 00</td>
<td>SIGNAGE</td>
<td>6</td>
</tr>
<tr>
<td>10 21 13</td>
<td>TOILET COMPARTMENTS</td>
<td>5</td>
</tr>
<tr>
<td>10 26 00</td>
<td>CORNER GUARDS</td>
<td>5</td>
</tr>
<tr>
<td>10 28 00</td>
<td>TOILET ACCESSORIES</td>
<td>6</td>
</tr>
<tr>
<td>10 44 13</td>
<td>FIRE EXTINGUISHER CABINETS</td>
<td>5</td>
</tr>
<tr>
<td>10 44 16</td>
<td>FIRE EXTINGUISHERS</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

TOC - 4
Table of Contents

Division 11 – Equipment
- 11 52 13 Projection Screens ... 4

Division 12 – Furnishings
- 12 21 13 Horizontal Louver Blinds .. 4
- 12 36 40 Stone Countertops ... 6
- 12 49 40 Roller Shades ... 10
- 12 61 00 Fixed Audience Seating .. 8
- 12 93 00 Site Furnishings .. 2

Division 13 – Special Construction (Not Used)

Division 14 – Conveying Equipment
- 14 21 00 Electric Traction Elevators ... 14
- 14 44 00 Electric Sidewalk Vertical Reciprocating Conveyor 6

Divisions 15 – 20 (Reserved)

Division 21 – Fire Suppression
- 21 05 00 Common Work Results for Fire Suppression 8
- 21 05 13 Common Motor Requirements for Fire Suppression Equipment 3
- 21 05 17 Sleeves and Sleeve Seals for Fire Suppression Piping 5
- 21 05 18 Escutcheons for Fire Suppression Piping 2
- 21 12 00 Fire-Suppression Standpipes .. 19
- 21 13 13 Wet-Pipe Sprinkler Systems ... 12
- 21 13 16 Dry-Pipe Sprinkler Systems .. 8
- 21 31 13 Electric-Drive, Centrifugal Fire Pumps .. 6
- 21 34 00 Pressure Maintenance Pumps .. 3
- 21 39 00 Controllers for Fire Pump Drivers ... 9

Division 22 – Plumbing
- 22 05 00 Common Work Results for Plumbing ... 10
- 22 05 13 Common Motor Requirements for Plumbing Equipment 3
- 22 05 16 Expansion Fittings and Loops for Plumbing Piping....................... 6
- 22 05 17 Sleeves and Sleeve Seals for Plumbing Piping 4
- 22 05 18 Escutcheons for Plumbing Piping ... 2
- 22 05 19 Meters and Gages for Plumbing Piping 4
- 22 05 23 General Duty Valves for Plumbing Piping 5
- 22 05 29 Hangers and Supports for Plumbing Piping and Equipment 5
- 22 05 53 Identification for Plumbing Piping and Equipment 4
- 22 07 00 Plumbing Insulation ... 14
- 22 10 23 Facility Natural-Gas Piping ... 17
- 22 11 16 Domestic Water Piping ... 15

VOLUME III

Division 21 – Fire Suppression
- 21 05 00 Common Work Results for Fire Suppression 8
- 21 05 13 Common Motor Requirements for Fire Suppression Equipment 3
- 21 05 17 Sleeves and Sleeve Seals for Fire Suppression Piping 5
- 21 05 18 Escutcheons for Fire Suppression Piping 2
- 21 12 00 Fire-Suppression Standpipes .. 19
- 21 13 13 Wet-Pipe Sprinkler Systems ... 12
- 21 13 16 Dry-Pipe Sprinkler Systems .. 8
- 21 31 13 Electric-Drive, Centrifugal Fire Pumps .. 6
- 21 34 00 Pressure Maintenance Pumps .. 3
- 21 39 00 Controllers for Fire Pump Drivers ... 9

Division 22 – Plumbing
- 22 05 00 Common Work Results for Plumbing ... 10
- 22 05 13 Common Motor Requirements for Plumbing Equipment 3
- 22 05 16 Expansion Fittings and Loops for Plumbing Piping....................... 6
- 22 05 17 Sleeves and Sleeve Seals for Plumbing Piping 4
- 22 05 18 Escutcheons for Plumbing Piping ... 2
- 22 05 19 Meters and Gages for Plumbing Piping 4
- 22 05 23 General Duty Valves for Plumbing Piping 5
- 22 05 29 Hangers and Supports for Plumbing Piping and Equipment 5
- 22 05 53 Identification for Plumbing Piping and Equipment 4
- 22 07 00 Plumbing Insulation ... 14
- 22 10 23 Facility Natural-Gas Piping ... 17
- 22 11 16 Domestic Water Piping ... 15
DIVISION 22 – PLUMBING (continued)

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 11 19</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
<td>16</td>
</tr>
<tr>
<td>22 11 23</td>
<td>DOMESTIC WATER PUMPS</td>
<td>4</td>
</tr>
<tr>
<td>22 11 23.13</td>
<td>DOMESTIC-WATER PACKAGED BOOSTER PUMPS</td>
<td>6</td>
</tr>
<tr>
<td>22 12 23</td>
<td>FACILITY INDOOR POTABLE-WATER STORAGE TANKS</td>
<td>5</td>
</tr>
<tr>
<td>22 13 16</td>
<td>SANITARY WASTE AND VENT PIPING</td>
<td>12</td>
</tr>
<tr>
<td>22 13 19</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
<td>8</td>
</tr>
<tr>
<td>22 14 13</td>
<td>FACILITY STORM DRAINAGE PIPING</td>
<td>11</td>
</tr>
<tr>
<td>22 14 23</td>
<td>STORM DRAINAGE PIPING SPECIALTIES</td>
<td>2</td>
</tr>
<tr>
<td>22 14 29</td>
<td>SUMP PUMPS</td>
<td></td>
</tr>
<tr>
<td>22 34 00</td>
<td>FUEL-FIRED, DOMESTIC-WATER HEATERS</td>
<td>6</td>
</tr>
<tr>
<td>22 40 00</td>
<td>PLUMBING FIXTURES</td>
<td>8</td>
</tr>
<tr>
<td>22 47 00</td>
<td>DRINKING FOUNTAINS</td>
<td>4</td>
</tr>
<tr>
<td>22 95 00</td>
<td>PLUMBING SYSTEMS COMMISSIONING</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 00</td>
<td>COMMON WORK RESULTS FOR HVAC</td>
<td>11</td>
</tr>
<tr>
<td>23 05 13</td>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
<td>3</td>
</tr>
<tr>
<td>23 05 16</td>
<td>EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING</td>
<td>8</td>
</tr>
<tr>
<td>23 05 17</td>
<td>SLEEVES AND SLEEVE SEALS FOR HVAC PIPING</td>
<td>5</td>
</tr>
<tr>
<td>23 05 18</td>
<td>ESCUTCHEONS FOR HVAC PIPING</td>
<td>2</td>
</tr>
<tr>
<td>23 05 19</td>
<td>METERS AND GAGES FOR HVAC PIPING</td>
<td>6</td>
</tr>
<tr>
<td>23 05 23</td>
<td>GENERAL-DUTY VALVES FOR HVAC PIPING</td>
<td>11</td>
</tr>
<tr>
<td>23 05 29</td>
<td>HANGER AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
<td>10</td>
</tr>
<tr>
<td>23 05 33</td>
<td>HEAT TRACING FOR HVAC PIPING</td>
<td>4</td>
</tr>
<tr>
<td>23 05 48</td>
<td>VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT</td>
<td>7</td>
</tr>
<tr>
<td>23 05 53</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
<td>6</td>
</tr>
<tr>
<td>23 05 93</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
<td>19</td>
</tr>
<tr>
<td>23 07 00</td>
<td>HVAC INSULATION</td>
<td>28</td>
</tr>
<tr>
<td>23 08 00</td>
<td>COMMISSIONING OF HVAC</td>
<td>6</td>
</tr>
<tr>
<td>23 09 00</td>
<td>INSTRUMENTATION AND CONTROL FOR HVAC</td>
<td>20</td>
</tr>
<tr>
<td>23 10 23</td>
<td>VARIABLE-FREQUENCY MOTOR CONTROLLERS</td>
<td>13</td>
</tr>
<tr>
<td>23 21 13</td>
<td>HYDRONIC PIPING</td>
<td>17</td>
</tr>
<tr>
<td>23 21 23</td>
<td>HYDRONIC PUMPS</td>
<td>6</td>
</tr>
<tr>
<td>23 25 00</td>
<td>HVAC WATER TREATMENT</td>
<td>8</td>
</tr>
<tr>
<td>23 31 13</td>
<td>METAL DUCTS</td>
<td>15</td>
</tr>
<tr>
<td>23 31 16</td>
<td>NONMETAL DUCTS</td>
<td>5</td>
</tr>
<tr>
<td>23 33 00</td>
<td>AIR DUCT ACCESSORIES</td>
<td>12</td>
</tr>
<tr>
<td>23 34 13</td>
<td>AXIAL HVAC FANS</td>
<td>5</td>
</tr>
<tr>
<td>23 34 23</td>
<td>HVAC POWER VENTILATORS</td>
<td>6</td>
</tr>
<tr>
<td>23 36 13</td>
<td>CHILLED BEAMS</td>
<td>4</td>
</tr>
<tr>
<td>23 37 13</td>
<td>DIFFUSERS, REGISTERS, AND GRILLES</td>
<td>3</td>
</tr>
<tr>
<td>23 37 23</td>
<td>HVAC GRAVITY VENTILATORS</td>
<td>4</td>
</tr>
<tr>
<td>23 51 00</td>
<td>FLUE VENTS</td>
<td>3</td>
</tr>
<tr>
<td>23 52 16</td>
<td>CONDENSING BOILERS</td>
<td>7</td>
</tr>
<tr>
<td>23 57 00</td>
<td>HEAT EXCHANGERS FOR HVAC</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

TOC - 6
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 64 23</td>
<td>MODULAR SCROLL WATER CHILLERS</td>
<td>8</td>
</tr>
<tr>
<td>23 73 13</td>
<td>MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS</td>
<td>11</td>
</tr>
<tr>
<td>23 81 26</td>
<td>SPLIT-SYSTEM AIR-CONDITIONERS</td>
<td>5</td>
</tr>
<tr>
<td>23 81 46</td>
<td>WATER-SOURCE UNITARY HEAT PUMPS</td>
<td>10</td>
</tr>
<tr>
<td>23 82 33</td>
<td>CONVECTORS</td>
<td>3</td>
</tr>
<tr>
<td>23 82 39</td>
<td>UNIT HEATERS</td>
<td>4</td>
</tr>
<tr>
<td>23 83 16</td>
<td>RADIANT-HEATING HYDRONIC PIPING</td>
<td>5</td>
</tr>
<tr>
<td>23 84 13</td>
<td>HUMIDIFIERS</td>
<td>4</td>
</tr>
</tbody>
</table>

DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING (continued)

DIVISIONS 24 (Reserved)

DIVISIONS 25 – INTEGRATED AUTOMATION

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 95 00</td>
<td>BUILDING AUTOMATION SYSTEM COMMISSIONING</td>
<td>6</td>
</tr>
</tbody>
</table>

VOLUME IV

DIVISION 26 – ELECTRICAL

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 00</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
<td>4</td>
</tr>
<tr>
<td>26 05 03</td>
<td>WIRING CONNECTIONS</td>
<td>2</td>
</tr>
<tr>
<td>26 05 19</td>
<td>WIRES AND CABLES</td>
<td>5</td>
</tr>
<tr>
<td>26 05 26</td>
<td>GROUNDING AND BONDING</td>
<td>3</td>
</tr>
<tr>
<td>26 05 29</td>
<td>SUPPORTING DEVICES</td>
<td>6</td>
</tr>
<tr>
<td>26 05 33</td>
<td>CONDUIT</td>
<td>5</td>
</tr>
<tr>
<td>26 05 34</td>
<td>PULL, JUNCTION AND OUTLET BOXES</td>
<td>2</td>
</tr>
<tr>
<td>26 05 35</td>
<td>CABINETS AND ENCLOSURES</td>
<td>2</td>
</tr>
<tr>
<td>26 05 43</td>
<td>DUCT BANKS AND MANHOLES</td>
<td>7</td>
</tr>
<tr>
<td>26 05 53</td>
<td>ELECTRICAL IDENTIFICATION</td>
<td>4</td>
</tr>
<tr>
<td>26 05 73</td>
<td>OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY</td>
<td>7</td>
</tr>
<tr>
<td>26 08 00</td>
<td>ELECTRICAL SYSTEMS COMMISSIONING</td>
<td>6</td>
</tr>
<tr>
<td>26 09 13</td>
<td>ELECTRICAL POWER MONITORING</td>
<td>22</td>
</tr>
<tr>
<td>26 12 00</td>
<td>DRY-TYPE TRANSFORMERS</td>
<td>5</td>
</tr>
<tr>
<td>26 23 00</td>
<td>SWITCHBOARDS</td>
<td>11</td>
</tr>
<tr>
<td>26 24 16</td>
<td>PANELBOARDS</td>
<td>5</td>
</tr>
<tr>
<td>26 27 13</td>
<td>ELECTRICITY METERING</td>
<td>5</td>
</tr>
<tr>
<td>26 27 26</td>
<td>WIRING DEVICES</td>
<td>4</td>
</tr>
<tr>
<td>26 28 19</td>
<td>CIRCUIT AND MOTOR DISCONNECTS</td>
<td>3</td>
</tr>
<tr>
<td>26 28 23</td>
<td>OVERCURRENT PROTECTIVE DEVICES</td>
<td>3</td>
</tr>
<tr>
<td>26 29 13</td>
<td>MOTOR STARTERS</td>
<td>5</td>
</tr>
<tr>
<td>26 32 13</td>
<td>ENGINE GENERATORS</td>
<td>12</td>
</tr>
<tr>
<td>26 33 53</td>
<td>STATIC UNINTERRUPTABLE POWER SUPPLIES</td>
<td>8</td>
</tr>
<tr>
<td>26 35 53</td>
<td>SURGE PROTECTIVE DEVICES</td>
<td>6</td>
</tr>
<tr>
<td>26 36 00</td>
<td>AUTOMATIC TRANSFER SWITCHES</td>
<td>9</td>
</tr>
<tr>
<td>26 51 00</td>
<td>LIGHTING AND ACCESSORIES</td>
<td>12</td>
</tr>
<tr>
<td>26 57 00</td>
<td>LIGHTING CONTROLS</td>
<td>13</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

TOC - 7
<table>
<thead>
<tr>
<th>Section No.</th>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 27 – COMMUNICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 13 43</td>
<td>TELECOMMUNICATIONS RACEWAYS AND ACCESSORIES</td>
<td>11</td>
</tr>
<tr>
<td>27 40 00</td>
<td>AUDIO-VIDEO COMMUNICATIONS</td>
<td>19</td>
</tr>
<tr>
<td>DIVISION 28 – ELECTRONIC SAFETY AND SECURITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 31 00</td>
<td>FIRE ALARM AND DETECTION SYSTEMS</td>
<td>39</td>
</tr>
<tr>
<td>28 32 00</td>
<td>2-WAY COMMUNICATION SYSTEM</td>
<td>5</td>
</tr>
<tr>
<td>DIVISION 31 – CIVIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 10 00</td>
<td>SITE CLEARING</td>
<td>5</td>
</tr>
<tr>
<td>31 20 00</td>
<td>EARTH MOVING</td>
<td>14</td>
</tr>
<tr>
<td>31 23 33</td>
<td>TRENCHING AND BACKFILLING</td>
<td>11</td>
</tr>
<tr>
<td>31 25 00</td>
<td>TEMPORARY EROSION AND SEDIMENTATION CONTROL</td>
<td>7</td>
</tr>
<tr>
<td>31 63 33</td>
<td>DRILLED MICROPILES</td>
<td>14</td>
</tr>
<tr>
<td>DIVISION 32 – LANDSCAPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 12 16</td>
<td>ASPHALT PAVING</td>
<td>10</td>
</tr>
<tr>
<td>32 13 13</td>
<td>CONCRETE PAVING</td>
<td>14</td>
</tr>
<tr>
<td>32 84 23</td>
<td>UNDERGROUND SPRINKLERS</td>
<td>16</td>
</tr>
<tr>
<td>32 90 00</td>
<td>FINE GRADING AND SOIL PREPARATION</td>
<td>8</td>
</tr>
<tr>
<td>32 92 00</td>
<td>TURF AND GRASSES</td>
<td>9</td>
</tr>
<tr>
<td>32 93 00</td>
<td>PLANTING</td>
<td>16</td>
</tr>
<tr>
<td>32 93 50</td>
<td>LANDSCAPE MAINTENANCE</td>
<td>6</td>
</tr>
<tr>
<td>32 94 00</td>
<td>PLANTING ACCESSORIES</td>
<td>8</td>
</tr>
<tr>
<td>DIVISION 33 – UTILITIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 31 00</td>
<td>SANITARY UTILITY SEWERAGE PIPING</td>
<td>17</td>
</tr>
<tr>
<td>33 41 00</td>
<td>STORM UTILITY DRAINAGE PIPING</td>
<td>12</td>
</tr>
<tr>
<td>DIVISIONS 34 THROUGH 49 (Not Used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td>COLORADO STATE UNIVERSITY – PUEBLO, ACADEMIC RESOURCES CENTER, SOILS REPORT</td>
<td>25</td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
SECTION 21 05 00

COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Grout.
 3. Fire-suppression equipment and piping demolition.
 4. Equipment installation requirements common to equipment sections.
 5. Painting and finishing.
 6. Concrete bases.
 7. Supports and anchorages.

1.03 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.
1.04 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.06 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
2.02 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.03 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.04 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.01 FIRE-SUPPRESSION DEMOLITION

A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove fire-suppression systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.

3.02 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. PVC or Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.03 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

3.04 PAINTING

A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.05 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."
3.06 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.07 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor fire-suppression materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.08 GROUTING

A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 21 05 13

COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.03 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.01 GENERAL MOTOR REQUIREMENTS
 A. Comply with requirements in this Section except when stricter requirements are specified in fire suppression equipment schedules or Sections.
 B. Comply with NEMA MG 1 unless otherwise indicated.
 C. Comply with IEEE 841 for severe-duty motors.

2.02 MOTOR CHARACTERISTICS
 A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 6000 feet above sea level.
 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.03 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.04 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.05 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 21 05 17

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

PART 2 - PRODUCTS

2.01 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.02 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.03 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel, Plastic, or Stainless steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, or Stainless steel of length required to secure pressure plates to sealing elements.

2.04 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.05 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.01 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.02 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.
B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.03 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.04 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.05 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves, Galvanized-steel wall sleeves, Galvanized-steel-pipe sleeves, or Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves, Galvanized-steel wall sleeves, or Galvanized-steel-pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping
 and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping
 and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves, Stack-sleeve fittings, or
 Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves, or Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION
SECTION 21 05 18

ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

PART 2 - PRODUCTS

2.01 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.02 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.

3.02 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 21 12 00
FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 3. Hose connections.
 4. Monitors.
 5. Fire-department connections.
 6. Alarm devices.
 8. Control panels.

B. Related Sections:
 1. Division 21 Section "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.
 2. Division 21 Section "Dry-Pipe Sprinkler Systems" for dry-pipe sprinkler piping.
 3. Division 21 Section "Electric-Drive, Centrifugal Fire Pumps" for fire pumps, pressure-maintenance pumps, and fire-pump controllers.
 4. Division 28 Section "Digital, Addressable Fire-Alarm System" for alarm devices not specified in this Section.

1.03 DEFINITIONS

A. Standard-Pressure Standpipe Piping: Fire-suppression standpipe piping designed to operate at working pressure 175 psig maximum.

1.04 SYSTEM DESCRIPTIONS

A. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

1.05 PERFORMANCE REQUIREMENTS

A. Standard-Pressure, Fire-Suppression Standpipe System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design
criteria indicated. Coordinate with Owner for fire-hydrant flow test information at nearest hydrant. If information is not available, coordinate with Owner and Authority having jurisdiction to conduct a flow test at the nearest hydrant.

C. Fire-suppression standpipe design shall be approved by authorities having jurisdiction.
 1. Minimum residual pressure at each hose-connection outlet is as follows:
 a. NPS 2-1/2 Hose Connections: 100 psig.

 2. Maximum residual pressure at required flow at each hose-connection outlet is as follows unless otherwise indicated:
 a. NPS 2-1/2 Hose Connections: 175 psig.

1.06 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Coordination Drawings: Fire-suppression standpipes, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC hydronic piping.

D. Qualification Data: For qualified Installer and professional engineer.

E. The professional engineer sealing fire protection drawings for this project shall have successfully passed the Fire Protection Professional Engineering Exam as administered by the National Council of Examiners for Engineering and Surveying (NCEES) and meet the required experience set by the State of Colorado Board of Licensure for Architects, Professional Engineers and Land Surveyors.

F. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

G. Fire-hydrant flow test report.

I. Operation and Maintenance Data: For fire-suppression standpipes specialties to include in emergency, operation, and maintenance manuals.
1.07 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer’s responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14, "Installation of Standpipe and Hose Systems."

PART 2 - PRODUCTS

2.01 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.02 STEEL PIPE AND FITTINGS

A. Standard Weight, Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

C. Thinwall Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.

D. Schedule 10, Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.

F. Uncoated, Steel Couplings: ASTM A 865, threaded.

H. Malleable- or Ductile-Iron Unions: UL 860.

J. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

L. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.03 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Grooved-Joint, Copper-Tube Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Shurjoint Piping Products.
 c. Victaulic Company.
 2. Grooved-End, Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze castings.
 3. Grooved-End-Tube Couplings: To fit copper tube dimensions, with design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gasket suitable for hot and cold water, and bolts and nuts.
2.04 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

D. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.05 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed or FM approved.

B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
 2. Standard: UL 1091.
5. End Connections: Threaded.

D. Iron Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Pratt, Henry Company.
 h. Shurjoint Piping Products.
 i. Tyco Fire & Building Products LP.
 j. Victaulic Company.

2. Standard: UL 1091.
4. Body Material: Cast or ductile iron.
5. Style: Lug or wafer.

E. Check Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 c. Anvil International, Inc.
 d. Clow Valve Company; a division of McWane, Inc.
 e. Crane Co.; Crane Valve Group; Crane Valves.
 f. Crane Co.; Crane Valve Group; Jenkins Valves.
 g. Crane Co.; Crane Valve Group; Stockham Division.
 h. Fire-End & Croker Corporation.
 i. Fire Protection Products, Inc.
 j. Fivalco Inc.
 k. Globe Fire Sprinkler Corporation.
 l. Groeniger & Company.
 m. Kennedy Valve; a division of McWane, Inc.
 n. Matco-Norca.
 o. Metraflex, Inc.
 p. Milwaukee Valve Company.
 q. Mueller Co.; Water Products Division.
 r. NIBCO INC.
 s. Potter Roemer.
 t. Reliable Automatic Sprinkler Co., Inc.
u. Shurjoint Piping Products.
v. Tyco Fire & Building Products LP.
w. United Brass Works, Inc.
x. Venus Fire Protection Ltd.
y. Victaulic Company.
z. Viking Corporation.
aa. Watts Water Technologies, Inc.

4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.

5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. Hammond Valve.
 h. Milwaukee Valve Company.
 i. Mueller Co.; Water Products Division.
 j. NIBCO INC.
 k. Shurjoint Piping Products.
 l. Tyco Fire & Building Products LP.
 m. United Brass Works, Inc.
 n. Watts Water Technologies, Inc.
4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kennedy Valve; a division of McWane, Inc.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Tyco Fire & Building Products LP.

5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

2.06 TRIM AND DRAIN VALVES

A. General Requirements:
2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Barnett.
 d. Conbraco Industries, Inc.; Apollo Valves.
 e. Fire-End & Croker Corporation.
 f. Fire Protection Products, Inc.
 g. Flowserve.
 h. FNW.
 i. Jomar International, Ltd.
 j. Kennedy Valve; a division of McWane, Inc.
 k. Kitz Corporation.
 l. Legend Valve.
 m. Metso Automation USA Inc.
 n. Milwaukee Valve Company.
 o. NIBCO INC.
 p. Potter Roemer.
 q. Red-White Valve Corporation.
 r. Southern Manufacturing Group.
 s. Stewart, M. A. and Sons Ltd.
 t. Tyco Fire & Building Products LP.
 u. Victaulic Company.
 v. Watts Water Technologies, Inc.
D. Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

E. Plug Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Southern Manufacturing Group.

2.07 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

B. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber (if needed), and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
2.08 HOSE CONNECTIONS

A. Nonadjustable-Valve Hose Connections:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Fire-End & Croker Corporation.
 d. Fire Protection Products, Inc.
 e. GMR International Equipment Corporation.
 f. Guardian Fire Equipment, Inc.
 g. Kennedy Valve; a division of McWane, Inc.
 h. Mueller Co.; Water Products Division.
 i. NIBCO INC.
 j. Potter Roemer.
 k. Tyco Fire & Building Products LP.
 l. Wilson & Cousins Inc.

2. Standard: UL 668 hose valve for connecting fire hose.
3. Pressure Rating: 300 psig minimum.
4. Material: Brass or bronze.
5. Size: NPS 1-1/2 or NPS 2-1/2, as indicated.
6. Inlet: Female pipe threads.
7. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.
8. Pattern: Angle or gate.
9. Finish: Rough brass or bronze.
2.09 FIRE-DEPARTMENT CONNECTIONS

A. Flush-Type, Fire-Department Connection:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. GMR International Equipment Corporation.
 d. Guardian Fire Equipment, Inc.
 e. Potter Roemer.
 3. Type: Flush, for wall mounting.
 6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 7. Caps: Brass, lugged type, with gasket and chain.
 8. Escutcheon Plate: Rectangular, brass, wall type.
 11. Number of Inlets: Two.
 12. Outlet Location: Back.
 13. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
 14. Finish: Rough brass or bronze.

2.10 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
 c. Potter Electric Signal Company.
 3. Type: Vibrating, metal alarm bell.
 4. Size: 6-inch minimum diameter.
 5. Finish: Red-enamel factory finish, suitable for outdoor use.
C. Water-Flow Indicators:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 5. Type: Paddle operated.
 7. Design Installation: Horizontal or vertical.

D. Pressure Switches:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.
 3. Type: Electrically supervised water-flow switch with retard feature.
 5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.11 CONTROL PANELS

A. Description: Single-area, two-area, or single-area cross-zoned control panel as indicated, including NEMA ICS 6, Type 1 enclosure, detector, alarm, and solenoid-valve circuitry for operation of deluge valves. Panels contain power supply; battery charger; standby batteries; field-wiring terminal strip; electrically supervised solenoid valves and polarized fire-alarm bell; lamp test facility; single-pole, double-throw auxiliary alarm contacts; and rectifier.
1. Panels: UL listed and FM approved when used with thermal detectors and Class A detector circuit wiring. Electrical characteristics are 120-V ac, 60 Hz, with 24-V dc rechargeable batteries.
2. Manual Control Stations: Electric operation, metal enclosure, labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.
3. Manual Control Stations: Hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.12 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. AMETEK; U.S. Gauge Division.
2. Ashcroft Inc.
4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.01 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 14 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.
3.02 EXAMINATION

A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.

B. Examine walls and partitions for suitable thickness, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.03 SERVICE-ENTRANCE PIPING

A. Connect fire-suppression standpipe piping to water-service piping at service entrance into building. Comply with requirements for exterior piping in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories at connection to fire-suppression water-service piping. Comply with requirements for backflow preventers in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.04 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.

C. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install drain valves on standpipes. Extend drain piping to outside of building.

E. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.

F. Install alarm devices in piping systems.

G. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.
H. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

I. Fill wet-type standpipe system piping with water.

J. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

K. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

L. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.05 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system’s pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
I. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

J. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

K. Copper-Tubing Grooved Joints: Roll rounded-edge groove in end of tube according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.06 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 3. Deluge Valves: Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.07 HOSE-CONNECTION INSTALLATION

A. Install hose connections adjacent to standpipes.

B. Install freestanding hose connections for access and minimum passage restriction.

C. Install NPS 2-1/2 hose-connection valves with flow-restricting device.

D. Install wall-mounted-type hose connections in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose. Comply with requirements for cabinets in Division 10 Section "Fire Extinguisher Cabinets."
3.08 FIRE-DEPARTMENT CONNECTION INSTALLATION
 A. Install wall-type, fire-department connections.
 B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.09 IDENTIFICATION
 A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.
 B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL
 A. Perform tests and inspections.
 B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Start and run air compressors.
 6. Coordinate with fire-alarm tests. Operate as required.
 7. Coordinate with fire-pump tests. Operate as required.
 8. Verify that equipment hose threads are same as local fire-department equipment.
 C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.
 D. Prepare test and inspection reports.

3.11 DEMONSTRATION
 A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.12 PIPING SCHEDULE
 A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
 B. Standard-pressure, wet-type, fire-suppression standpipe piping, NPS 4 and smaller, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
4. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Type L, hard copper tube with plain ends; cast- or wrought-copper solder-joint fittings; and brazed joints.
6. Type L, hard copper tube with roll-grooved ends; copper, grooved-end fittings; grooved-end-tube couplings; and grooved joints.

C. Standard-pressure, wet-type, fire-suppression standpipe piping, NPS 5 to NPS 8, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
4. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Type L, hard copper tube with plain ends; cast- or wrought-copper solder-joint fittings; and brazed joints.
6. Type L, hard copper tube with roll-grooved ends; copper, grooved-end fittings; grooved-end-tube couplings; and grooved joints.
SECTION 21 13 13

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Sprinklers.

B. Related Sections:
 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.
 2. Division 21 Section "Dry-Pipe Sprinkler Systems" for dry-pipe sprinkler piping.
 3. Division 21 Section "Electric-Drive, Centrifugal Fire Pumps" for fire pumps, pressure-maintenance pumps, and fire-pump controllers.

1.03 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.04 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.05 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. Coordinate with Owner for fire-hydrant flow test information at nearest hydrant. If information is not available, coordinate with Owner and Authority having jurisdiction to conduct a flow test at the nearest hydrant.

C. Sprinkler system design shall be approved by authorities having jurisdiction.
 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 c. General Storage Areas: Ordinary Hazard, Group 1.
 d. Libraries except Stack Areas: Light Hazard.
 e. Library Stack Areas (Bookshelves no higher than 8'-0", books stored vertically on end, held in place in close association with each other, with aisles wider than 30") : Light Hazard.
 f. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 g. Office and Public Areas: Light Hazard.
 h. Restaurant Service Areas: Ordinary Hazard, Group 1.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.

4. Maximum Protection Area per Sprinkler: Per UL listing.
5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.

1.06 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content and chemical components.

C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC hydronic piping.
 3. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

E. Qualification Data: For qualified Installer and professional engineer.
F. The professional engineer sealing fire protection drawings for this project shall have successfully passed the Fire Protection Professional Engineering Exam as administered by the National Council of Examiners for Engineering and Surveying (NCEES) and meet the required experience set by the State of Colorado Board of Licensure for Architects, Professional Engineers and Land Surveyors.

G. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

H. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

I. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.07 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.08 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.09 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.
PART 2 - PRODUCTS

2.01 COVER SYSTEM FOR SPRINKLER PIPING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. DecoShield Systems, Inc.

B. Description: System of support brackets and covers made to protect sprinkler piping.

C. Brackets: Glass-reinforced nylon.

D. Covers: Extruded PVC sections of length, shape, and size required for size and routing of CPVC piping.

2.02 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 5. Type: Mechanical-T and -cross fittings.
 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. FlexHead Industries, Inc.
 c. Gateway Tubing, Inc.
3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
5. Size: Same as connected piping, for sprinkler.

2.03 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. AFAC Inc.
3. Reliable Automatic Sprinkler Co., Inc.
4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:

C. Automatic Sprinklers with Heat-Responsive Element:
1. Nonresidential Applications: UL 199.
2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:
1. Chrome plated.
2. Bronze.
3. Painted.
E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

F. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.

PART 3 - EXECUTION

3.01 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Fill sprinkler system piping with water.

N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.02 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system’s pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
G. **Threaded Joints:** Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. **Damaged Threads:** Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. **Steel-Piping, Pressure-Sealed Joints:** Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

I. **Welded Joints:** Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. **Shop weld pipe joints where welded piping is indicated.** Do not use welded joints for galvanized-steel pipe.

J. **Steel-Piping, Roll-Grooved Joints:** Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

K. **Brazed Joints:** Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

L. **Copper-Tubing Grooved Joints:** Roll rounded-edge groove in end of tube according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. **Extruded-Tee Connections:** Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

N. **Dissimilar-Material Piping Joints:** Make joints using adapters compatible with materials of both piping systems.

3.03 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and with NFPA 13 or NFPA 13R for supports.

3.04 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 3. Deluge Valves: Install in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.05 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.06 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.07 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.08 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.
3.09 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.10 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control vales, instead of specified fittings.

C. Copper-tube, extruded-tee connections may be used for tee branches in copper tubing instead of specified copper fittings. Branch-connection joints must be brazed.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight or Schedule 30, black-steel pipe with plain ends; uncoated, plain-end-pipe fittings; and twist-locked joints.
 3. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 4. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
 5. Type L, hard copper tube with plain ends; cast- or wrought-copper solder-joint fittings; and brazed joints.
 6. NPS 2, Type L, hard copper tube with roll-grooved ends; copper, grooved-end fittings; grooved-end-tube couplings; and grooved joints.

E. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 3. Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
 4. Type L, hard copper tube with plain ends; cast- or wrought-copper solder-joint fittings; and brazed joints.
 5. Type L, hard copper tube with roll-grooved ends; copper, grooved-end fittings; grooved-end-tube couplings; and grooved joints.

F. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
4. Type L, hard copper tube with plain ends; cast- or wrought-copper solder-joint fittings; and brazed joints.
5. Type L, hard copper tube with roll-grooved ends; copper, grooved-end fittings; grooved-end-tube couplings; and grooved joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Pendent, recessed, flush, and concealed sprinklers as indicated.
4. Spaces Subject to Freezing: Sidewall, dry sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
4. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION
SECTION 21 13 16

DRY-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Deluge valves.

B. Related Sections:
 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.
 2. Division 21 Section "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.
 3. Division 21 Section "Electric-Drive, Centrifugal Fire Pumps" for fire pumps, pressure-maintenance pumps, and fire-pump controllers.
 4. Division 28 Section "Digital, Addressable Fire-Alarm System" for alarm devices not specified in this Section.

1.03 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Dry-pipe sprinkler system piping designed to operate at working pressure 175 psig maximum.

1.04 SYSTEM DESCRIPTIONS

A. Single-Interlock Preaction Sprinkler System: Automatic sprinklers are attached to piping containing low-pressure air. Actuation of fire-detection system in same area as sprinklers opens deluge valve, permitting water to flow into piping and to discharge from sprinklers that have opened.

1.05 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

C. Sprinkler system design shall be approved by authorities having jurisdiction.
 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:
 a. Office and Public Areas: Light Hazard
 b. General Storage Areas: Ordinary Hazard, Group 1

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.

4. Maximum Protection Area per Sprinkler: Per UL listing.

1.06 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC hydronic piping.
 3. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

D. Qualification Data: For qualified Installer and professional engineer.

E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

G. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.07 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."

1.08 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.09 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.01 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 b. High-Pressure Piping Specialty Valves: 250 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

B. Deluge Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. BERMAD Control Valves.
 c. CLA-VAL Automatic Control Valves.
 d. Globe Fire Sprinkler Corporation.
 e. OCV Control Valves.
 f. Reliable Automatic Sprinkler Co., Inc.
 g. Tyco Fire & Building Products LP.
 h. Venus Fire Protection Ltd.
 i. Victaulic Company.
 j. Viking Corporation.
4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, drip cup assembly piped without valves and separate from main drain line, fill-line attachment with strainer, and push-rod chamber supply connection.
5. Dry, Pilot-Line Trim Set: Include dry, pilot-line actuator; air- and water-pressure gages; low-air-pressure warning switch; air relief valve; and actuation device. Dry, pilot-line actuator includes cast-iron, operated, diaphragm-type valve with resilient facing plate, resilient diaphragm, and replaceable bronze seat. Valve includes threaded water and air inlets and water outlet. Loss of air pressure on dry, pilot-line side allows pilot-line actuator to open and causes deluge valve to open immediately.

2.02 SPRINKLER SPECIALTY PIPE FITTINGS

A. General Requirements for Dry-Pipe-System Fittings: UL listed for dry-pipe service.

PART 3 - EXECUTION

3.01 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 13 for installation of sprinkler piping.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install alarm devices in piping systems.

J. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements in NFPA 13 for hanger materials.
K. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

L. Drain dry-pipe sprinkler piping.

M. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

N. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

O. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.02 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
I. Copper-Tubing Grooved Joints: Roll rounded-edge groove in end of tube according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Copper-Tubing, Pressure-Sealed Joints: Join copper tube and copper pressure-seal fittings with tools recommended by fitting manufacturer.

K. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.03 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 2. Deluge Valves: Install trim sets drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.04 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendant or sidewall, wet-type sprinklers in areas subject to freezing.

3.05 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
3.06 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.07 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.08 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain specialty valves.

3.09 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

B. Copper-tube, extruded-tee connections may be used for tee branches in copper tubing instead of specified copper fittings. Branch-connection joints must be brazed.

C. Standard-pressure, dry-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight Schedule 30, galvanized-steel pipe with plain ends; plain-end-pipe fittings; and twist-locked joints.
 3. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

D. Standard-pressure, dry-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
1. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.

2. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.10 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Dry pendent, recessed, flush, and concealed sprinklers as indicated.
 3. Wall Mounting: Dry sidewall sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 4. Upright, Pendent, and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION
SECTION 21 31 13

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. In-line fire pumps.
 2. Fire-pump accessories and specialties.

1.03 PERFORMANCE REQUIREMENTS

A. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig minimum unless higher pressure rating is indicated.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For fire pumps, motor drivers, and fire-pump accessories and specialties. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Product Certificates: For each fire pump, from manufacturer.

D. Operation and Maintenance Data: For fire pumps to include in operation and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 20, "Installation of Stationary Pumps for Fire Protection."
1.06 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS FOR CENTRIFUGAL FIRE PUMPS

A. Description: Factory-assembled and -tested fire-pump and driver unit.

B. Finish: Red paint applied to factory-assembled and -tested unit before shipping.

2.02 IN-LINE FIRE PUMPS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Armstrong Pumps, Inc.

B. Pump:
 1. Standard: UL 448, for in-line pumps for fire service.
 3. Impeller: Cast bronze, statically and dynamically balanced, and keyed to shaft.
 5. Shaft and Sleeve: Steel shaft with bronze sleeve.
 a. Shaft Bearings: Grease-lubricated ball bearings in cast-iron housing.
 b. Seals: Stuffing box with minimum of four rings of graphite-impregnated braided yarn and bronze packing gland.
 6. Mounting: Pump and driver shaft is vertical, with motor above pump and pump on base.

C. Coupling: None or rigid.

D. Driver:
 1. Standard: UL 1004A.
 2. Type: Electric motor; NEMA MG 1, polyphase Design B.

2.03 FIRE-PUMP ACCESSORIES AND SPECIALTIES

A. Automatic Air-Release Valves: Comply with NFPA 20 for installation in fire-pump casing.

B. Circulation Relief Valves: UL 1478, brass, spring loaded; for installation in pump discharge piping.
C. Relief Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. BERMAD Control Valves.
 b. CLA-VAL Automatic Control Valves.
 c. Kunkle Valve; a part of Tyco International Ltd.
 d. OCV Control Valves.
 e. Watts Regulator Company; a division of Watts Water Technologies, Inc.
 f. Zurn Plumbing Products Group; Wilkins Water Control Products.
 2. Description: UL 1478, bronze or cast iron, spring loaded; for installation in fire-suppression water-supply piping.

D. Inlet Fitting: Eccentric tapered reducer at pump suction inlet.

E. Outlet Fitting: Concentric tapered reducer at pump discharge outlet.

F. Discharge Cone: Closed or open type.

G. Hose Valve Manifold Assembly:

2.04 GROUT

B. Characteristics: Nonshrink and recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.05 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire pumps according to UL 448 requirements for "Operation Test" and "Manufacturing and Production Tests."
 1. Verification of Performance: Rate fire pumps according to UL 448.

B. Fire pumps will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine equipment bases and anchorage provisions, with Installer present, for compliance with requirements and for conditions affecting performance of fire pumps.

B. Examine roughing-in for fire-suppression piping systems to verify actual locations of piping connections before fire-pump installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Fire-Pump Installation Standard: Comply with NFPA 20 for installation of fire pumps, relief valves, and related components.

B. Equipment Mounting: Install fire pumps on concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Install fire-pump suction and discharge piping equal to or larger than sizes required by NFPA 20.

D. Support piping and pumps separately so weight of piping does not rest on pumps.

E. Install valves that are same size as connecting piping. Comply with requirements for fire-protection valves specified in Division 21 Section "Fire-Suppression Standpipes" and Division 21 Section "Wet-Pipe Sprinkler Systems."

F. Install pressure gages on fire-pump suction and discharge flange pressure-gage tappings. Comply with requirements for pressure gages specified in Division 21 Section "Fire-Suppression Standpipes" and Division 21 Section "Wet-Pipe Sprinkler Systems."

G. Install piping hangers and supports, anchors, valves, gages, and equipment supports according to NFPA 20.

H. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not factory mounted. Furnish copies of manufacturers' wiring diagram submittals to electrical Installer.
I. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.03 CONNECTIONS
A. Comply with requirements for piping and valves specified in Division 21 Section "Fire-Suppression Standpipes" and Division 21 Section "Wet-Pipe Sprinkler Systems." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to pumps and equipment to allow service and maintenance.
C. Connect relief-valve discharge to drainage piping or point of discharge.
D. Connect fire pumps to their controllers.

3.04 IDENTIFICATION
A. Identify system components. Comply with requirements for fire-pump marking according to NFPA 20.

3.05 FIELD QUALITY CONTROL
A. Test each fire pump with its controller as a unit. Comply with requirements for electric-motor-driver fire-pump controllers specified in Division 21 Section "Controllers for Fire-Pump Drivers."
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Tests and Inspections:
 1. After installing components, assemblies, and equipment including controller, test for compliance with requirements.
 2. Test according to NFPA 20 for acceptance and performance testing.
 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
E. Components, assemblies, and equipment will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports.
G. Furnish fire hoses in number, size, and length required to reach storm drain or other acceptable location to dispose of fire-pump test water. Hoses are for tests only and do not convey to Owner.

3.06 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.07 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire pumps.

END OF SECTION
SECTION 21 34 00

PRESSURE-MAINTENANCE PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Pressure-maintenance pumps.

B. Related Section:
 1. Division 21 Section "Controllers For Fire-Pump Drivers" for pressure-maintenance-pump controllers.

1.03 PERFORMANCE REQUIREMENTS

A. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig minimum unless higher pressure rating is indicated.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For pumps, accessories, and specialties. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Operation and Maintenance Data: For pumps to include in operation and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.06 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.
PART 2 - PRODUCTS

2.01 PRESSURE-MAINTENANCE PUMPS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Armstrong Pumps, Inc.
 3. TACO Incorporated.

B. Description: Factory-assembled and -tested, multistage, barrel-type vertical pump as defined in HI 2.1-2.2 and HI 2.3; designed for surface installation with pump and motor direct coupled and mounted vertically.

C. Pump Construction:
 2. Suction and Discharge Chamber: Cast iron with flanged inlet and outlet.
 3. Pump Head/Motor Mount: Cast iron.
 4. Impellers: Stainless steel, balanced, and keyed to shaft.
 6. Seal: Mechanical type with carbon rotating face and silicon-carbide stationary seat.
 7. Intermediate Chamber Bearings: Aluminum-oxide ceramic or bronze.
 9. O-Rings: EPDM or NBR.

D. Motor: Single speed with permanently lubricated ball bearings and rigidly mounted to pump head. Comply with requirements in Division 21 Section "Common Motor Requirements for Fire Suppression Equipment."
 1. Power Cord: Factory-connected to motor for field connection to controller and at least 10 feet long.

E. Nameplate: Permanently attached to pump and indicating capacity and characteristics.

2.02 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 21 Section "Common Motor Requirements for Fire Suppression Equipment."
 1. Motor Sizes: Minimum size as indicated; if not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

PART 3 - EXECUTION

3.01 EQUIPMENT INSTALLATION

A. NFPA Standard: Comply with NFPA 20 for installation of pressure-maintenance pumps.
3.02 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Pressure-maintenance pumps will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.03 ADJUSTING

A. Lubricate pumps as recommended by manufacturer.

B. Set field-adjustable pressure-switch ranges as indicated.

END OF SECTION
SECTION 21 39 00

CONTROLLERS FOR FIRE-PUMP DRIVERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Full-service, full-voltage controllers rated 600 V and less.
2. Limited-service controllers rated 600 V and less.
3. Controllers for diesel-drive fire pumps.
5. Remote alarm panels.

1.03 DEFINITIONS

A. ATS: Automatic transfer switch(es).
B. ECM: Electronic control module.
C. MCCB: Molded-case circuit breaker.
D. N.O.: Normally open.

1.04 PERFORMANCE REQUIREMENTS

1.05 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each type of product indicated. Include dimensioned plans, elevations, sections, details, and attachments to other work, including required clearances and service spaces around controller enclosures.
1. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Enclosure types and details for types other than NEMA 250, Type 2.
 c. Factory-installed devices.
 d. Nameplate legends.
CONTROLLERS FOR FIRE-PUMP DRIVERS

10.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of an NRTL.

B. Source Limitations: Obtain fire-pump controllers and all associated equipment from single source or producer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with standards of authorities having jurisdiction pertaining to materials and installation.

E. Comply with NFPA 20 and NFPA 70.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subject to weather, protect controllers from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; connect factory-installed space heaters to temporary electrical service.
1.08 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Ambient Temperature Rating: Not less than 40 deg F and not exceeding 122 deg F unless otherwise indicated.
 2. Altitude Rating: Not exceeding 6000 feet unless otherwise indicated.

B. Interruption of Existing Electric Service: Notify Architect no fewer than seven days in advance of proposed interruption of electric service, and comply with NFPA 70E.

1.09 COORDINATION

A. Coordinate layout and installation of controllers with other construction including conduit, piping, fire-pump equipment, and adjacent surfaces. Maintain required clearances for workspace and equipment access doors and panels. Ensure that controllers are within sight of fire-pump drivers.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.10 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Indicating Lights: Two of each type and color of lens installed; two of each type and size of lamp installed.
 2. Auxiliary Contacts: One for each size and type of magnetic contactor installed.
 3. Power Contacts: Three for each size and type of magnetic contactor installed.
 4. Contactor Coils: One for each size and type of magnetic controller installed.
 5. Relay Boards: One for each size and type of relay board installed.
 6. Operator Interface: One microprocessor board(s), complete with display and membrane keypad.

PART 2 - PRODUCTS

2.01 FULL-SERVICE CONTROLLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Aquarius Fluid Products, Inc.
 2. ASCO Power Technologies, LP; Firetrol Products.
 4. Hubbell Incorporated; Hubbell Industrial Controls.
 7. Metron, Inc.
 8. Tornatech.

B. General Requirements for Full-Service Controllers:
1. Comply with NFPA 20 and UL 218.
2. Listed by an NRTL for electric-motor driver for fire-pump service.
3. Combined automatic and nonautomatic operation.
4. Factory assembled, wired, and tested; continuous-duty rated.
5. Service Equipment Label: NRTL labeled for use as service equipment.

C. Method of Starting:
 1. Solid-State Controller: Reduced-voltage type.

D. Method of Stopping: Automatic and nonautomatic shutdown after automatic starting.

E. Capacity: Rated for fire-pump-driver horsepower and short-circuit-current (withstand) rating equal to or greater than short-circuit current available at controller location.

F. Method of Isolation and Overcurrent Protection: Interlocked isolating switch and nonthermal MCCB; with a common, externally mounted operating handle, and providing locked-rotor protection.

G. Door-Mounted Operator Interface and Controls:
 1. Monitor, display, and control the devices, alarms, functions, and operations listed in NFPA 20 as required for drivers and controller types used.
 2. Method of Control and Indication:
 a. Microprocessor-based logic controller, with multiline digital readout.
 b. Membrane keypad.
 c. LED alarm and status indicating lights.
 3. Local and Remote Alarm and Status Indications:
 a. Controller power on.
 b. Motor running condition.
 c. Loss-of-line power.
 d. Line-power phase reversal.
 e. Line-power single-phase condition.
 4. Audible alarm, with silence push button.
 5. Nonautomatic START and STOP push buttons or switches.

H. Optional Features:
 1. Extra Output Contacts:
 a. One N.O. contact for motor running condition.
 b. One set of contacts for loss-of-line power.
 c. One each, Form C contacts for high and low reservoir level.
 2. Local alarm bell.
 3. Door-mounted thermal or impact printer for alarm and status logs.

I. ATS:
 1. Complies with NFPA 20, UL 218, and UL 1008.
2. Integral with controller as a listed combination fire-pump controller and power transfer switch.
3. Automatically transfers fire-pump controller from normal power supply to alternate power supply in event of power failure.
4. Allows manual transfer from one source to the other.
5. Alternate-Source Isolating and Disconnecting Means: Integral molded-case switch, with an externally mounted operating handle.
6. Alternate-Source Isolating and Disconnecting Means: Mechanically interlocked isolation switch and circuit breaker rated at a minimum of 115 percent of rated motor full-load current, with an externally mounted operating handle; circuit breaker shall be provided with nonthermal sensing, instantaneous-only short-circuit overcurrent protection to comply with available fault currents.
7. Local and Remote Alarm and Status Indications:
 a. Normal source available.
 b. Alternate source available.
 c. In normal position.
 d. In alternate position.
 e. Isolating means open.
8. Audible alarm, with silence push button.
10. Engine test push button.
11. Start generator output contacts.
12. Timer for weekly generator tests.

2.02 ENCLOSURES

A. Fire-Pump Controllers: NEMA 250, to comply with environmental conditions at installed locations and NFPA 20.
 1. Indoor, Dry and Clean Locations: Type 1 (IEC IP10).
 2. Indoor Locations Subject to Dripping Noncorrosive Liquids: Type 2 (IEC IP11).
 3. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12 (IEC IP12).

B. Enclosure Color: Manufacturer's standard "fire-pump-controller red".

C. Nameplates: Comply with NFPA 20; complete with capacity, characteristics, approvals, listings, and other pertinent data.

D. Optional Features:
 1. Floor stands, 12 inches high, for floor-mounted controllers.
 2. Space heater, 120-V ac, with thermostat.
 3. Tropicalization.

2.03 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire-pump controllers according to requirements in NFPA 20 and UL 218.
1. Verification of Performance: Rate controllers according to operation of functions and features specified.

B. Fire-pump controllers will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas and surfaces to receive equipment, with Installer present, for compliance with requirements and other conditions affecting performance.

B. Examine equipment before installation. Reject equipment that is wet or damaged by moisture or mold.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 CONTROLLER INSTALLATION

A. Install controllers within sight of their respective drivers.

B. Connect controllers to their dedicated pressure-sensing lines.

C. Wall-Mounting Controllers: Install controllers on walls with disconnect operating handles not higher than 79 inches above finished floor, and bottom of enclosure not less than 12 inches above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."

D. Floor-Mounting Controllers: Install controllers on 4-inch nominal-thickness concrete bases, using floor stands high enough so that the bottom of enclosure cabinet is not less than 12 inches above finished floor. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
F. Comply with NEMA ICS 15.

3.03 POWER WIRING INSTALLATION

A. Install power wiring between controllers and their services or sources, and between controllers and their drivers. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 CONTROL AND ALARM WIRING INSTALLATION

A. Install wiring between controllers and remote devices and facility’s central monitoring system. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Control-Voltage Electrical Power Cables."

B. Install wiring between remote alarm and low-suction-shutdown panels and controllers. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Control-Voltage Electrical Power Cables."

C. Install wiring between controllers and the building’s fire-alarm system. Comply with requirements specified in Division 28 Section "Digital, Addressable Fire-Alarm System."

D. Bundle, train, and support wiring in enclosures.

E. Connect remote manual and automatic activation devices where applicable.

3.05 IDENTIFICATION

A. Comply with requirements in NFPA 20 for marking fire-pump controllers.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification in NFPA 20 and as specified in Division 26 Section "Identification for Electrical Systems."

3.06 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Inspect and Test Each Component:
 a. Inspect wiring, components, connections, and equipment installations. Test and adjust components and equipment.
 b. Test insulation resistance for each element, component, connecting supply, feeder, and control circuits.
c. Test continuity of each circuit.

2. Verify and Test Each Electric-Driver Controller:
 a. Verify that voltages at controller locations are within plus 10 or minus 1 percent of motor nameplate rated voltages, with motors off. If outside this range for any motor, notify Architect before starting the motor(s).
 b. Test each motor for proper phase rotation.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Field Acceptance Tests:
 1. Do not begin field acceptance testing until suction piping has been flushed and hydrostatically tested and the certificate for flushing and testing has been submitted to Architect and authorities having jurisdiction.
 2. Prior to starting, notify authorities having jurisdiction of the time and place of the acceptance testing.
 3. Engage manufacturer’s factory-authorized service representative to be present during the testing.
 4. Perform field acceptance tests as outlined in NFPA 20.

E. Controllers will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.07 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.08 ADJUSTING

A. Adjust controllers and battery charger systems to function smoothly and as recommended by manufacturer.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, and timers.

C. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

D. Set field-adjustable pressure switches.
3.09 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer’s written instructions until enclosed controllers are ready to be energized and placed into service.

B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain controllers, remote alarm panels, low-suction-shutdown panels, and to use and reprogram microprocessor-based controls within this equipment.

END OF SECTION
SECTION 22 05 00
COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
5. Plumbing demolition.
6. Equipment installation requirements common to equipment sections.
7. Painting and finishing.
8. Concrete bases.

1.03 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
2. CPVC: Chlorinated polyvinyl chloride plastic.
3. PE: Polyethylene plastic.
4. PVC: Polyvinyl chloride plastic.
The following are industry abbreviations for rubber materials:
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.04 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

B. Welding certificates.

1.05 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.07 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished or unfinished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.02 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.03 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerrant piping, unless otherwise indicated.
G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.04 TRANSITION FITTINGS

A. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 1. Available Manufacturers:
 a. Fernco, Inc.
 c. Plastic Oddities, Inc.

2.05 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Available Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Available Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
E. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 1. Available Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.06 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.01 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping and maintain fixture and component order as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.
K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.02 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

3.03 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.04 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.05 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.
3.06 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.07 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.08 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.09 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 22 05 13

COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.03 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.01 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in plumbing equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.

2.02 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.03 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.04 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.05 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 22 05 16

EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Flexible-hose packless expansion joints.
 2. Metal-bellows packless expansion joints.
 3. Rubber packless expansion joints.
 5. Pipe loops and swing connections.
 6. Alignment guides and anchors.

1.03 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Maintenance Data: For expansion joints to include in maintenance manuals.

1.05 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. ASME Boiler and Pressure Vessel Code: Section IX.
PART 2 - PRODUCTS

2.01 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Flex Pression Ltd.
 d. Metraflex, Inc.
 e. Unisource Manufacturing, Inc.

2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.

4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
 a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 b. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.

5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.

 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.

7. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Stainless-steel fittings with flanged end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.
B. Metal-Bellows Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. American BOA, Inc.
 c. Badger Industries, Inc.
 d. Expansion Joint Systems, Inc.
 e. Flex-Hose Co., Inc.
 f. Flexicraft Industries.
 g. Flex Pression Ltd.
 h. Flex-Weld, Inc.
 i. Flo Fab inc.
 j. Hyspan Precision Products, Inc.
 k. Metraflex, Inc.
 l. Proco Products, Inc.
 m. Senior Flexonics Pathway.
 n. Tozen Corporation.
 o. Unaflex.
 p. Unisource Manufacturing, Inc.
 q. Universal Metal Hose; a subsidiary of Hyspan Precision Products, Inc.
 r. U.S. Bellows, Inc.
 s. WahlcoMetroflex.

 3. Type: Circular, corrugated bellows with external tie rods.

 5. Configuration: Single joint class(es) unless otherwise indicated.

 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Solder joint or threaded.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.

C. Rubber Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Amber/Booth Company, Inc.; a div. of Vibration Isolation Products of Texas, Inc.
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. Flex-Weld, Inc.
 e. Garlock Sealing Technologies.
 f. General Rubber Corporation.
 g. Mason Industries, Inc.; Mercer Rubber Co.
 h. Metraflex, Inc.
i. Proco Products, Inc.
j. Red Valve Company, Inc.
k. Tozen Corporation.
l. Unaflex.
m. Unisource Manufacturing, Inc.

4. Arch Type: Single or multiple arches with external control rods.
5. Spherical Type: Single or multiple spheres with external control rods.
6. Minimum Pressure Rating for NPS 1-1/2 to NPS 4: 150 psig at 220 deg F.
7. Material for Water: EPDM.

2.02 GROOVED-JOINT EXPANSION JOINTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Anvil International, Inc.
 2. Shurjoint Piping Products.
 3. Victaulic Company.

B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.

C. Standard: AWWA C606, for grooved joints.

D. Nipples: Galvanized, ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.

E. Couplings: Five, flexible type for steel-pipe dimensions. Include ferrous housing sections, EPDM gasket suitable for cold and hot water, and bolts and nuts.

2.03 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. Advanced Thermal Systems, Inc.
 c. Flex-Hose Co., Inc.
 d. Flexicraft Industries.
 e. Flex-Weld, Inc.
 f. Hyspan Precision Products, Inc.
 g. Metraflex, Inc.
 h. Senior Flexonics Pathway.
i. Unisource Manufacturing, Inc.

j. U.S. Bellows, Inc.

2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:
1. Steel Shapes and Plates: ASTM A 36/A 36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.01 EXPANSION-JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

C. Install rubber packless expansion joints according to FSA-NMEJ-702.

D. Install grooved-joint expansion joints to grooved-end steel piping

3.02 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.03 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install one guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:
 2. Anchor Attachment to Galvanized-Steel Pipe: Attach with pipe hangers. Use MSS SP-69, Type 42, riser clamp welded to anchor.
 3. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer’s written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION
SECTION 22 05 17

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

PART 2 - PRODUCTS

2.01 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.02 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.03 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.04 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.05 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.01 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.02 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."
3.03 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.04 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.05 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.

 2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

 3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

 4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.

 5. Interior Partitions:

END OF SECTION
SECTION 22 05 18
ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

PART 2 - PRODUCTS

2.01 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

2.02 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with rough-brass finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with rough-brass finish.
h. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
i. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
j. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
k. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
l. Bare Piping in Unfinished Service Spaces: Split-casting brass type with rough-brass finish.
m. Bare Piping in Equipment Rooms: Split-casting brass type with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.02 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 22 05 19

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Liquid-in-Glass Thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.

B. Related Sections:
 1. Division 21 Section "Facility Fire-Suppression Water-Service Piping" for fire-protection water-service meters outside the building.
 2. Division 21 fire-suppression piping Sections for fire-protection pressure gages.
 3. Division 22 Section "Facility Water Distribution Piping" for domestic water meters and combined domestic and fire-protection water-service meters outside the building.
 4. Division 22 Section "Domestic Water Piping" for water meters inside the building.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.01 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Trerice, H. O. Co.

 4. Case Form: Back angle unless otherwise indicated.
 5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.02 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Type: Stepped shank unless straight or tapered shank is indicated.
 5. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 6. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 7. Bore: Diameter required to match thermometer bulb or stem.
 8. Insertion Length: Length required to match thermometer bulb or stem.
 10. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.03 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab Inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
 h. Palmer Wahl Instrumentation Group.
 i. REOTEMP Instrument Corporation.
 j. Tel-Tru Manufacturing Company.
 k. Trerice, H. O. Co.
 l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
m. Weiss Instruments, Inc.
n. WIKA Instrument Corporation - USA.
o. Winters Instruments - U.S.

3. Case: Liquid-filled Sealed Solid-front, type(s); cast aluminum or drawn steel; nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS ½ ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
9. Window: Glass or plastic.
11. Accuracy: Grade D, plus or minus 5 percent of whole scale range.

2.04 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches into fluid or one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

E. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

F. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.

G. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Suction and discharge of each domestic water pump.
3.02 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.03 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.04 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Direct-mounted, metal-case, vapor-actuated type.

B. Thermometer stems shall be of length to match thermowell insertion length.

3.05 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.

B. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F

3.06 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be of one of the following:

3.07 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 100 psi.

END OF SECTION
SECTION 22 05 23

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.
 4. Bronze swing check valves.

B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.03 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

G. SWP: Steam working pressure.

1.04 SUBMITTALS

A. Product Data: For each type of valve indicated.
1.05 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve-End Connections:
 1. Grooved: With grooves according to AWWA C606.
 2. Solder Joint: With sockets according to ASME B16.18.
 3. Threaded: With threads according to ASME B1.20.1.

E. Valve Bypass and Drain Connections: MSS SP-45.
2.02 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 b. NIBCO INC.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.03 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.04 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. NIBCO INC.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.02 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Lift Check Valves: With stem upright and plumb.

3.03 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball 2-1/2” or less Butterfly 3” and over.
 2. Branch Isolation: Ball 2-1/2” or less Butterfly 3” and over.
 3. Throttling Service: Ball or butterfly valves.
 4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze lift check valves with bronze disc.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Copper tubing, NPS 5 and Larger: Flanged ends.
 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
B. Ball Valves: One piece, full port, brass or bronze with stainless-steel trim.
C. Bronze Swing Check Valves: Class 125, bronze or nonmetallic disc.
SECTION 22 05 29

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 1. Steel pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Pipe positioning systems.
 8. Equipment supports.

B. Related Sections include the following:
 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.
 3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
 4. Division 22 Section "Vibration Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.03 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.04 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
1.05 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.
 4. Pipe positioning systems.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.02 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Available Manufacturers:
 1. AAA Technology & Specialties Co., Inc.
 2. Bergen-Power Pipe Supports.
 4. Carpenter & Paterson, Inc.
 5. Empire Industries, Inc.
 6. ERICO/Michigan Hanger Co.
 7. Globe Pipe Hanger Products, Inc.
 8. Grinnell Corp.
 9. GS Metals Corp.
 11. PHD Manufacturing, Inc.
 12. PHS Industries, Inc.
 13. Piping Technology & Products, Inc.
 14. Tolco Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.
2.03 TRAPEZE PIPE HANGERS
 A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.04 EQUIPMENT SUPPORTS
 A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.05 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.01 HANGER AND SUPPORT APPLICATIONS
 A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
 D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 E. Use padded hangers for piping that is subject to scratching.
 F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.

6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.

7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.

11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.

12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.

13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.

15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
H. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

I. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

J. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

K. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
L. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

M. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.02 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

D. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.

E. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
J. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

L. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood inserts.
 6. Insert Material: Length at least as long as protective shield.
 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.03 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.04 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.05 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.06 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
SECTION 22 05 53

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Equipment labels.
2. Pipe labels.
3. Valve tags.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

1.04 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.01 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.02 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.03 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass beaded chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.
PART 3 - EXECUTION

3.01 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.02 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.03 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:
 1. Domestic Hot Water Piping:
 a. Background Color: Yellow
 b. Letter Color: Black
 2. Domestic Cold Water Piping
 a. Background Color: Green.
 b. Letter Color: White
 3. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.
3.04 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 b. Hot Water: Natural

END OF SECTION
SECTION 22 07 00

PLUMBING INSULATION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Insulation Materials:
 2. Insulating cements.
 3. Adhesives.
 5. Lagging adhesives.
 7. Factory-applied jackets.
 10. Field-applied jackets.
 11. Tapes.
 12. Securements.
 13. Corner angles.

B. Related Sections include the following:
 1. Division 21 Section "Fire-Suppression Systems Insulation."
 2. Division 23 Section "HVAC Insulation."

1.03 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For adhesives and sealants, including printed statement of VOC content.

C. Qualification Data: For qualified Installer.

1.04 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.06 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.07 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.01 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide the following;
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000(Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

G. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide the following:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Manson Insulation Inc.; AK Flex.
 e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.02 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.

 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.03 MASTICS

A. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

2.04 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-76.

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.05 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.06 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
1. Products: Subject to compliance with requirements, provide the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 b. Compac Corp.; 130.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 d. Venture Tape; 1506 CW NS.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.07 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.03 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.04 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.05 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.

6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches (150 mm) from each end. Install wire or cable between two circumferential girdles 12 inches (300 mm) o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches (1200 mm) o.c. Use this network for securing insulation with tie wire or bands.

7. Stagger joints between insulation layers at least 3 inches (75 mm).

8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.

9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.

10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

3.06 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.07 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer’s recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application. Install preformed pipe insulation to outer diameter of pipe flange.
 5. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 6. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

E. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer’s written instructions.

F. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer’s written instructions.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.08 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor’s option.

B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.

C. Domestic water pump insulation shall be one of the following:
 1. Mineral-Fiber Board: 1 inch thick and 3-lb/cu. ft. nominal density.

D. Domestic hot-water pump insulation shall be one of the following:
 1. Mineral-Fiber Board: 1 inch thick and 3-lb/cu. ft. nominal density.

E. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be one of the following:
 1. Mineral-Fiber Board: 1 inch thick and 3-lb/cu. ft. nominal density.

F. Domestic hot-water storage tank insulation shall be one of the following, of thickness to provide an R-value of 12.5:
 1. Mineral-Fiber Board: 3-lb/cu. ft. nominal density.
G. Domestic water storage tank insulation shall be one of the following:
 1. Mineral-Fiber Board: 1 inch thick and 3-lb/cu. ft. nominal density.

3.09 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor’s option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

 2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Stormwater and Overflow:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

F. Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

B. Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

END OF SECTION
SECTION 22 10 23

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.
 7. Concrete bases.

1.03 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. PE: Polyethylene.

1.04 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 65 psig minimum unless otherwise indicated.
 3. Minimum Operating Pressure of Service Meter: 5 psig.

B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

1.05 SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Service meters. Indicate pressure ratings and capacities. Include bypass fittings and meter bars.
6. Dielectric fittings.

B. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

C. Operation and Maintenance Data: For pressure regulators and service meters to include in emergency, operation, and maintenance manuals.

1.06 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.08 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

1.09 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.
B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.01 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

 6. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Dresser Piping Specialties; Division of Dresser, Inc.
 2) Smith-Blair, Inc.
 b. Stainless-steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. PE Pipe: ASTM D 2513, SDR 11.
 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 c. Aboveground Portion: PE transition fitting.
 d. Outlet shall be threaded or flanged or suitable for welded connection.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

 a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 b. Outlet shall be threaded or flanged or suitable for welded connection.
 c. Bridging sleeve over mechanical coupling.
 d. Factory-connected anode.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.02 PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.03 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.
2.04 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
E. Bronze Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Lee Brass Company.
 5. Operator: Square head or lug type with tamperproof feature where indicated.
 6. Pressure Class: 125 psig.
 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 c. Xomox Corporation; a Crane company.
 2. Body: Cast iron, complying with ASTM A 126, Class B.
 3. Plug: Bronze or nickel-plated cast iron.
 4. Seat: Coated with thermoplastic.
 5. Stem Seal: Compatible with natural gas.
 7. Operator: Square head or lug type with tamperproof feature where indicated.
 8. Pressure Class: 125 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Valve Boxes:
 1. Cast-iron, two-section box.
 2. Top section with cover with "GAS" lettering.
 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 4. Adjustable cast-iron extensions of length required for depth of bury.
 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.
2.05 PRESSURE REGULATORS

A. General Requirements:
1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 d. Invensys.
 e. Richards Industries; Jordan Valve Div.
2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 100 psig.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.
2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.
5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.06 SERVICE METERS

A. Diaphragm-Type Service Meters: Comply with ANSI B109.2.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Actaris.
 b. American Meter Company.
 c. Invensys.
3. Connections: Steel threads.
6. Compensation: Continuous temperature and pressure.
7. Meter Index: Cubic feet.
8. Meter Case and Index: Tamper resistant.
10. Maximum Inlet Pressure: 100 psig.
11. Pressure Loss: Maximum 0.5-inch wg.
12. Accuracy: Maximum plus or minus 1.0 percent.

B. Service-Meter Bars:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Actaris.
 b. American Meter Company.
 c. Lyall, R. W. & Company, Inc.
 e. Mueller Co.; Gas Products Div.
 f. Perfection Corporation; a subsidiary of American Meter Company.
2. Malleable- or cast-iron frame for supporting service meter.
3. Include offset swivel pipes, meter nuts with o-ring seal, and factory- or field-installed dielectric unions.
4. Omit meter offset swivel pipes if service-meter bar dimensions match service-meter connections.

C. Service-Meter Bypass Fittings:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Williamson, T. D., Inc.
2. Ferrous, tee, pipe fitting with capped side inlet for temporary natural-gas supply.
3. Integral ball-check bypass valve.

2.07 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
h. Wilkins; a Zurn company.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.

 2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

2.08 LABELING AND IDENTIFYING

 A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.01 EXAMINATION

 A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

 A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

 B. -gas utilization devices are turned off in piping section affected.
3.03 OUTDOOR PIPING INSTALLATION

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.

E. Install fittings for changes in direction and branch connections.

F. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.04 INDOOR PIPING INSTALLATION

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.
H. Install natural-gas piping at uniform grade of 1 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.
Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 22 Section "Meters and Gages for Plumbing Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.05 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.

C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies. Comply with requirements in Division 05 Section "Metal Fabrications" for pipe bollards.

H. Coordinate with controls contractor for meter pulser installation and interface with Building Automation System.
3.06 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install anode for metallic valves in underground PE piping.

3.07 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
3.08 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.09 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

A. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.11 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Alkyd System: MPI EXT 5.1D.
 c. Topcoat: Exterior alkyd enamel (flat).
 d. Color: Gray.
C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex (flat).
 d. Color: Gray.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.13 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.14 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be one of the following:
 1. PE pipe and fittings joined by heat fusion, or mechanical couplings; service-line risers with tracer wire terminated in an accessible location.

B. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Underground, below building, piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

3.16 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.

B. Underground:
 1. PE valves.
 2. NPS 2 and Smaller: Bronze plug valves.
 3. NPS 2-1/2 and Larger: Cast-iron, nonlubricated plug valves.

3.17 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.

END OF SECTION
SECTION 22 11 16
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Encasement for piping.
 4. Flexible connectors.
 5. Water meters.

1.03 SUBMITTALS

A. Product Data: For the following products:
 1. Specialty valves.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Flexible connectors.
 5. Backflow preventers and vacuum breakers.
 6. Water penetration systems.

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Product Data for Credit EA 5: For specified metering equipment.

C. Water Samples: Specified in “Cleaning” Article.

D. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Fire-suppression-water piping.
 2. Domestic water piping.
 3. Compressed air piping.
 4. HVAC hydronic piping.

1.04 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 61 for potable domestic water piping and components.

1.05 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.02 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 5. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.
 b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 6. Copper-Tube Extruded-Tee Connections:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) T-DRILL Industries Inc.
 b. Description: Tee formed in copper tube according to ASTM F 2014.
 7. Grooved-Joint Copper-Tube Appurtenances:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Shurjoint Piping Products.
 3) Victaulic Company.
b. Copper Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.

c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
2. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.

 b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 c. NPS 3 and NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

2.03 PIPING JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.04 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.

B. Form: Sheet or Tube.

C. Material: LLDPE film of 0.008-inch minimum thickness.

D. Color: Black or Natural.

2.05 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Dresser Piping Specialties.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc; a Sensus company.
 g. Viking Johnson; c/o Mueller Co.

2.06 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating
 nonconductive insulating material. Include end connections compatible with pipes to be
 joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.

 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.
2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded
 solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. Elster Perfection.
 b. Grinnell Mechanical Products.
 c. Matco-Norca, Inc.
 d. Precision Plumbing Products, Inc.
 e. Victaulic Company.
 2. Description:
 a. Standard: IAPMO PS 66
 b. Electroplated steel nipple. complying with ASTM F 1545.
 c. Pressure Rating: 300 psig at 225 deg F.
 d. End Connections: Male threaded or grooved.
 e. Lining: Inert and noncorrosive, propylene.

2.07 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering
 products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex Pression, Ltd.
 4. Flex-Weld, Inc.
5. Hyspan Precision Products, Inc.
7. Metraflex, Inc.
8. Proco Products, Inc.
10. Unaflex, Inc.
11. Universal Metal Hose; a Hyspan company

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.08 WATER METERS

A. Turbine-Type Water Meters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AALIANT; a Venture Measurement Product Line.
 b. ABB.
 c. Badger Meter, Inc.
 d. Hays Fluid Controls.
 e. Master Meter, Inc.
 f. McCrometer.
 g. Mueller Company; Water Products Division.
 h. Schlumberger Limited; Water Division.
 i. SeaMetrics Inc.
 j. Sensus Metering Systems.
 2. Description:
 b. Pressure Rating: 150-psig working pressure.
 c. Body Design: Turbine; totalization meter.
 d. Registration: In gallons or cubic feet as required by utility company.
 e. Case: Bronze.
 f. End Connections for Meters NPS 2 and Smaller: Threaded.
 g. End Connections for Meters NPS 2-1/2 and Larger: Flanged.
B. Compound-Type Water Meters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 a. ABB.
 b. Badger Meter, Inc.
 c. Master Meter, Inc.
 d. Mueller Company; Water Products Division.
 e. Schlumberger Limited; Water Division.
 f. Sensus Metering Systems.
 2. Description:
 b. Pressure Rating: 150-psig working pressure.
 c. Body Design: With integral mainline and bypass meters; totalization meter.
 d. Registration: In gallons or cubic feet as required by utility company.
 e. Case: Bronze.

C. Remote Registration System:
 1. Direct-reading type complying with AWWA C706; modified with signal transmitting
 assembly, low-voltage connecting wiring, and remote register assembly as required by
 building automation system.
 2. Encoder type complying with AWWA C707; modified with signal transmitting assembly,
 low-voltage connecting wiring, and remote register assembly as required by building
 automation system.

PART 3 - EXECUTION

3.01 EARTHWORK
 A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and
 backfilling.

3.02 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of
 domestic water piping. Indicated locations and arrangements are used to size pipe and
 calculate friction loss, expansion, and other design considerations. Install piping as indicated
 unless deviations to layout are approved on Coordination Drawings.
 B. Install copper tubing under building slab according to CDA’s "Copper Tube Handbook."
 C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.
DOMESTIC WATER PIPING

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

J. Install piping adjacent to equipment and specialties to allow service and maintenance.

K. Install piping to permit valve servicing.

L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

P. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

Q. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.03 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.04 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.05 TRANSITION FITTING INSTALLATION
A. Install transition couplings at joints of dissimilar piping.
B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

3.06 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples or unions.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.07 FLEXIBLE CONNECTOR INSTALLATION
A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
B. Install bronze-hose flexible connectors in copper domestic water tubing.

3.08 WATER METER INSTALLATION
A. Rough-in domestic water piping for water meter installation, and install water meters according to utility company's requirements.
B. Install water meters according to AWWA M6, manufacturer's requirements, and the following:

DOMESTIC WATER PIPING
22 11 16 - 10
C. Install turbine-type water meters with shutoff valve on water-meter inlet. Install valve on water-meter outlet and valved bypass around meter unless prohibited by authorities having jurisdiction.

D. Install compound-type water meters with shutoff valves on water-meter inlet and outlet and on valved bypass around meter. Support meters, valves, and piping on brick or concrete piers.

E. Install remote registration system according to standards of manufacturer and of authorities having jurisdiction.

3.09 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.
 7. NPS 8: 10 feet with 3/4-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.10 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.11 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.13 ADJUSTING

A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.14 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.15 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints.

E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints.

F. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard or soft copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints.

G. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

H. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
 3. Hard copper tube, ASTM B 88, Type L; grooved-joint copper-tube appurtenances; and grooved joints.
3.16 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION
SECTION 22 11 19

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 5. Temperature-actuated water mixing valves.
 7. Outlet boxes.
 8. Hose bibs.
 9. Wall hydrants.
 10. Drain valves.
 12. Air vents.
 13. Trap-seal primer valves.
 14. Trap-seal primer systems.

B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.

1.03 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.01 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
 i. Zurn Plumbing Products Group; Light Commercial Operation.
 j. Zurn Plumbing Products Group; Wilkins Div.
5. Finish: Rough bronze.

C. Pressure Vacuum Breakers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomantic Corporation.
 e. Toro Company (The); Irrigation Div.
 g. Zurn Plumbing Products Group; Wilkins Div.
3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.02 BACKFLOW PREVENTERS

A. Intermediate Atmospheric-Vent Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Honeywell Water Controls.
 e. Legend Valve.
 g. Zurn Plumbing Products Group; Wilkins Div.
2. Standard: ASSE 1012.
3. Operation: Continuous-pressure applications.
5. Body: Bronze.
6. End Connections: Union or solder joint.
7. Finish: Chrome plated or Rough bronze.

B. Reduced-Pressure-Principle Backflow Preventers:
1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
d. Flomatic Corporation.
e. Watts Industries, Inc.; Water Products Div.
f. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

C. Double-Check Backflow-Prevention Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Hose-Connection Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Woodford Manufacturing Company.

3. Operation: Up to 10-foot head of water back pressure.
4. Inlet Size: NPS 1/2 or NPS 3/4.
5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
6. Capacity: At least 3-gpm flow.

E. Backflow-Preventer Test Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 c. Flomatic Corporation.
 e. Zurn Plumbing Products Group; Wilkins Div.

2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.03 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
 e. Zurn Plumbing Products Group; Wilkins Div.

4. Design Inlet Pressure: 80 psig
5. Design Outlet Pressure Setting: As required.
6. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

B. Water Control Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CLA-VAL Automatic Control Valves.
 b. Flomatic Corporation.
 c. OCV Control Valves.
 e. Watts Industries, Inc.; Watts ACV.
 f. Zurn Plumbing Products Group; Wilkins Div.

2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.

4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 a. Size: As required
 b. Pattern: Angle-valve design.
 c. Trim: Stainless steel.

5. Design Inlet Pressure: 80 psig.

6. Design Outlet Pressure Setting: As required.

7. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.04 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.
 f. Taco, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 2. Type: Ball valve with two readout ports and memory setting indicator.
 3. Body: Brass or bronze,
 4. Size: Same as connected piping, but not larger than NPS 2.
 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

C. Memory-Stop Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.
 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.05 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Leonard Valve Company.
 b. Powers; a Watts Industries Co.
 c. Taco, Inc.
 e. Zurn Plumbing Products Group; Wilkins Div.

4. Type: Thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting:

B. Primary, Thermostatic, Water Mixing Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers; a Watts Industries Co.
 e. Symmons Industries, Inc.

4. Type: Exposed-mounting or Cabinet-type, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded or union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
9. Tempered-Water Setting:
11. Valve Finish: Chrome plated or Rough bronze.
12. Piping Finish: Copper.
13. Cabinet: Factory-fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Cash Acme.
b. Conbraco Industries, Inc.
c. Honeywell Water Controls.
d. Lawler Manufacturing Company, Inc.
e. Leonard Valve Company.
f. Powers; a Watts Industries Co.
g. Watts Industries, Inc.; Water Products Div.
h. Zurn Plumbing Products Group; Wilkins Div.

4. Pressure Rating: 125 psig minimum, unless otherwise indicated.
5. Body: Bronze body with corrosion-resistant interior components.
7. Inlets and Outlet: Threaded.
8. Finish: Rough or chrome-plated bronze.
9. Tempered-Water Setting:

2.06 STRainers FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 c. Strainers NPS 5 and Larger: 0.10 inch.
2.07 OUTLET BOXES

A. Icemaker Outlet Boxes:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. IPS Corporation.
 c. LSP Products Group, Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
 4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
 5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.08 HOSE BIBBS

A. Hose Bibbs:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
 2. Standard: ASME A112.18.1 for sediment faucets.
 5. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
 9. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 10. Finish for Service Areas: Rough bronze, Chrome or nickel plated.
 11. Finish for Finished Rooms: Chrome or nickel plated.
 12. Operation for Equipment Rooms: Wheel handle or operating key.
15. Include operating key with each operating-key hose bibb.
16. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.09 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounting with cover.
11. Nozzle and Wall-Plate Finish: Polished nickel bronze or Rough bronze.
12. Operating Keys(s): One with each wall hydrant.

2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.
2.11 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounting with cover.
11. Nozzle and Wall-Plate Finish: Polished nickel bronze or Rough bronze.
12. Operating Keys(s): One with each wall hydrant.

2.12 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.
B. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.13 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
 3. Type: Metal bellows.
 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.14 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
 1. Body: Bronze.
 2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
 3. Float: Replaceable, corrosion-resistant metal.
 5. Size: NPS 1/2 minimum inlet.

B. Welded-Construction Automatic Air Vents:
 2. Pressure Rating: 150-psig minimum pressure rating.
 3. Float: Replaceable, corrosion-resistant metal.
2.15 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not
 chrome finished.

B. Drainage-Type, Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 b. Zurn Plumbing Products Group; Specification Drainage Operation.

2.16 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 a. PPP Inc.
 2. Standard: ASSE 1044,
 3. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
 5. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
 7. Number Outlets: Four, Six, or Eight.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

E. Install balancing valves in locations where they can easily be adjusted.

F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

G. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

H. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

I. Install water hammer arresters in water piping according to PDI-WH 201.

J. Install air vents at high points of water piping.

K. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
 1. Install supply-type, trap-seal primer valves at each floor drain unless a drainage-type, trap-seal primer valve is supplied.
L. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.
 1. Install drainage-type, trap-seal primer valves at each floor drain where a lavatory or sink is located in the same room as the floor drain.

M. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.
 1. Trap-seal primer systems may be used in place of individual supply-type, trap-seal primer valves.

3.02 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.03 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Intermediate atmospheric-vent backflow preventers.
 3. Reduced-pressure-principle backflow preventers.
 5. Water pressure-reducing valves.
 6. Calibrated balancing valves.
 7. Primary, thermostatic, water mixing valves.
 9. Primary water tempering valves.
 10. Outlet boxes.
 11. Supply-type, trap-seal primer valves.
 12. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."
3.04 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
 1. Test each pressure vacuum breaker reduced-pressure-principle backflow preventer and double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.05 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION
SECTION 22 11 23

DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. In-line, sealless centrifugal pumps.

B. Related Sections include the following:
 1. Division 22 Section "Domestic-Water Packaged Booster Pumps" for booster systems.

1.03 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

B. Protect bearings and couplings against damage.

C. Comply with pump manufacturer's written rigging instructions for handling.
PART 2 - PRODUCTS

2.01 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
1. Armstrong Pumps Inc.
2. Bell & Gossett Domestic Pump; ITT Corporation.
3. TACO Incorporated.

B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.

C. Pump Construction:
1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
2. Casing: Bronze, with threaded or companion-flange connections.
4. Motor: Single speed, unless otherwise indicated.

D. Capacities and Characteristics:
1. See Drawings.

2.02 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."
1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.03 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
1. Type: Water-immersion temperature sensor, for installation in piping.
2. Range: 65 to 200 deg F.
3. Enclosure: NEMA 250, Type 4X.
4. Operation of Pump: On or off, enabled by Building Automation System during operating hours.
5. Transformer: Provide if required.
7. Settings: Start pump at 110 deg F and stop pump at 120 deg F.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.02 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install horizontally mounted, in-line, close-coupled centrifugal pumps with shaft(s) horizontal.

D. Install vertically mounted, in-line, close-coupled centrifugal pumps with shaft vertical.

E. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.
 1. Comply with requirements for vibration isolation devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

F. Install thermostats in hot-water return piping.

3.03 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Section "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping" and comply with requirements for strainers specified in Division 22 Section "Domestic Water Piping Specialties."
 2. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Division 22 Section "Meters and Gages for Plumbing Piping."

D. Comply with Division 26 Sections for electrical connections, and wiring methods.
E. Connect thermostats to pumps that they control.

3.04 IDENTIFICATION

A. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.05 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set thermostats for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 7. Start motor.
 8. Open discharge valve slowly.
 9. Adjust temperature settings on thermostats.

3.06 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION
SECTION 22 11 23.13

DOMESTIC-WATER PACKAGED BOOSTER PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Multiplex, variable-speed booster pumps.

B. Related Sections:
 1. Division 22 Section "Domestic Water Pumps" for domestic-water circulation pumps.
 2. Division 22 Section "Facility Indoor Potable-Water Storage Tanks" for separate hydropneumatic domestic-water tanks for multiplex booster pumps.

1.03 DEFINITIONS

A. VFC: Variable-frequency controller(s).

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, and dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For booster pumps. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Operation and Maintenance Data: For booster pumps to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance: Comply with ASME B31.9 for piping.
C. UL Compliance for Packaged Pumping Systems:
 1. UL 508, "Industrial Control Equipment."
 2. UL 508A, "Industrial Control Panels."
 3. UL 778, "Motor-Operated Water Pumps."

D. Booster pumps shall be listed and labeled as packaged pumping systems by testing agency acceptable to authorities having jurisdiction.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Retain protective coatings and flange's protective covers during storage.

1.07 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.01 MULTIPLEX, VARIABLE-SPEED BOOSTER PUMPS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Armstrong Pumps Inc.
 2. Bell & Gossett Domestic Pump; ITT Corporation.

B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pumps, piping, valves, specialties, and controls, and mounted on base.

C. Pumps:
 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, close-coupled, single-stage, overhung-impeller, centrifugal pump.
 2. Casing: Radially split; bronze.
 3. Impeller: Closed, ASTM B 584 cast bronze; statically and dynamically balanced and keyed to shaft.
 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
 5. Seal: Mechanical.
 6. Orientation: Mounted horizontally or vertically.

D. Pumps:
 1. Type: Vertical, multistage as defined in HI 1.1-1.2 and HI 1.3 for in-line, multistage, separately coupled, overhung-impeller, centrifugal pump.
 2. Casing: Cast-iron or steel base and stainless-steel chamber.
 3. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 5. Seal: Mechanical.
E. Pumps:
 1. Type: Vertical, can, as defined in HI 2.1-2.2 and HI 2.3 for in-line, barrel or can, lineshaft, vertical pump.
 2. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 5. Seals: Mechanical and stuffing-box types.

F. Motors: Single speed, with grease-lubricated or pre-greased, permanently shielded, ball-type bearings. Select motors that will not overload through full range of pump performance curve.

G. Piping: Copper tube and copper fittings.

H. Valves:
 1. Shutoff Valves NPS 2 and Smaller: two-piece, full-port ball valve, in each pump's suction and discharge piping.
 2. Shutoff Valves NPS 2-1/2 and Larger: lug-type butterfly valve, in each pump's suction and discharge piping and in inlet and outlet headers.
 3. Check Valves NPS 2 and Smaller: Silent or swing type in each pump's discharge piping.
 4. Check Valves NPS 2-1/2 and Larger: Silent type in each pump's discharge piping.
 5. Thermal-Relief Valve: Temperature-and-pressure relief type in pump's discharge header piping.

I. Dielectric Fittings: With insulating material isolating joined dissimilar metals.

J. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for multiple-pump, variable-speed operation, with load control and protection functions.
 1. Control Logic: Solid-state system with transducers, programmable microprocessor, VFC, and other devices in controller. Install VFC for pump motors larger than 25 hp in separate panel; same type as motor control panel enclosure.
 a. Control Voltage: 24 or 120-V ac, with integral control-power transformer.
 3. Enclosure: NEMA 250, Type 1.
 5. Starting Devices: Hand-off-automatic selector switch for each pump in cover of control panel, plus pilot device for automatic control.
 a. Duplex, Automatic, Alternating Starter: Switches lead pump to lag main pump and to two-pump operation.
 a. Time Delay: Controls pump on-off operation; adjustable from 1 to 300 seconds.
 7. VFC: Voltage-source, pulse-width, modulating-frequency converter for each pump.
 8. Manual Bypass: Magnetic contactor arranged to transfer to constant-speed operation upon VFC failure.
10. Lights: Running light for each pump.
11. Alarm Signal Device: Sounds alarm when backup pumps are operating.
 a. Time Delay: Controls alarm operation; adjustable from 1 to 300 seconds, with
 manual reset.
12. Thermal-bleed cutoff.
13. Low-suction-pressure cutout.
15. Low-discharge-pressure cutout.
16. High-discharge-pressure cutout.
17. Building Automation System Interface: Provide auxiliary contacts for interface to
 Johnson Controls building automation system. Building automation systems are
 specified in Division 23 Section "Instrumentation and Control for HVAC." Include the
 following:
 a. On-off status of each pump.
 b. Alarm status.

K. Base: Structural steel.

L. Capacities and Characteristics:
 1. See drawings.

2.02 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and
 efficiency requirements for motors.
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load
 will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical
 devices and connections specified in NFPA 70.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine roughing-in for booster pumps to verify actual locations of piping connections before
 booster-pump installation.

3.02 INSTALLATION

A. Equipment Mounting: Install booster pumps on concrete base using elastomeric pads
 elastomeric mounts or restrained spring isolators. Comply with requirements for concrete
 base specified in Division 03 Section "Cast-in-Place Concrete."
 1. Minimum Deflection: 1 inch.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise
 indicated, install dowel rods on 18-inch centers around the full perimeter of concrete
 base.

DOMESTIC-WATER PACKAGED BOOSTER PUMPS
22 11 23.13 - 4
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Equipment Mounting: Install booster pumps using elastomeric pads, elastomeric mounts or restrained spring isolators. Comply with requirements for vibration isolation devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
1. Minimum Deflection: 1 inch.

C. Support connected domestic-water piping so weight of piping is not supported by booster pumps.

3.03 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Section "Domestic Water Piping."
Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect domestic-water piping to booster pumps. Install suction and discharge pipe equal to or greater than size of system suction and discharge headers.
1. Install shutoff valves on piping connections to booster-pump suction and discharge headers. Install ball, butterfly, or gate valves same size as suction and discharge headers. Comply with requirements for general-duty valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
2. Install union, flanged, or grooved-joint connections on suction and discharge headers at connection to domestic-water piping. Comply with requirements for unions and flanges specified in Division 22 Section "Domestic Water Piping."
3. Install valved bypass, same size as and between piping, at connections to booster-pump suction and discharge headers. Comply with requirements for domestic-water piping specified in Division 22 Section "Domestic Water Piping."
4. Install flexible connectors, same size as piping, on piping connections to booster-pump suction and discharge headers. Comply with requirements for flexible connectors specified in Division 22 Section "Domestic Water Piping."
5. Install piping adjacent to booster pumps to allow service and maintenance.

3.04 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.05 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Tests and Inspections:
 1. Perform visual and mechanical inspection.
 2. Leak Test: After installation, charge booster pump and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start booster pumps to confirm proper motor rotation and booster-pump operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Pumps and controls will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.06 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer’s written instructions.

3.07 ADJUSTING

A. Adjust booster pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust pressure set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting booster pump to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.08 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain booster pumps.

END OF SECTION
SECTION 22 12 23

FACILITY INDOOR POTABLE-WATER STORAGE TANKS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Steel, precharged, potable-water storage tanks.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water storage tanks.
 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.04 QUALITY ASSURANCE

A. ASME Compliance for Steel Tanks: Fabricate and label steel, ASME-code, potable-water storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

1.05 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.01 STEEL, PRECHARGED, POTABLE-WATER STORAGE TANKS

A. Steel, Precharged, Diaphragm, Water Storage Tanks:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Flexcon Industries; Plumbing & Heating Division.
 d. Flo Fab Inc.
e. Myers; Pentair Pump Group.
f. State Industries, Inc.
g. Taco, Inc.
h. Wessels Company.

2. Description: Steel, vertical, pressured-rated tank with cylindrical sidewalls and with air-charging valve and air precharge.

B. Steel, Precharged, Bladder, Water Storage Tanks:
1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Armstrong Pumps, Inc.
 b. Flo Fab inc.
 c. Taco, Inc.
 d. Wessels Company.
 e. Wood, John Co.

2. Description: Steel, vertical, pressured-rated tank with cylindrical sidewalls and with air-charging valve and air precharge.

C. Construction: ASME code, steel, constructed with nontoxic welded joints, for 125-psig working pressure.

D. Tappings: Factory-fabricated steel, welded to tank.
1. NPS 2 and Smaller: ASME B1.20.1, with female thread.
2. NPS 2-1/2 and Larger: ASME B16.5, flanged.

E. Specialties and Accessories: Include tappings in tank and the following:
1. Pressure gage.

F. Vertical Tank Supports: Factory-fabricated steel legs or steel skirt, welded to tank before testing and labeling.

G. Tank Interior Finish: Materials and thicknesses complying with NSF 61 barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.
1. Lining Material: Cement or Copper.
2. Coating: Epoxy resin or Glass.

H. Exterior Coating: Manufacturer's standard enamel paint.
2.02 SOURCE QUALITY CONTROL

A. Test and inspect potable-water storage tanks according to the following tests and inspections and prepare test reports:
 1. Pressure Testing for ASME-Code, Potable-Water Storage Tanks: Hydrostatically test to ensure structural integrity and freedom from leaks. Fill tanks with water, vent air, pressurize to 1-1/2 times tank pressure rating, disconnect test equipment, hold pressure for 30 minutes with no drop in pressure, and check for leaks.
 2. Pressure Testing for Non-ASME-Code, Pressure, Potable-Water Storage Tanks: Hydrostatically test to ensure structural integrity and freedom from leaks at pressure of 50 psig above system operating pressure, but not less than 150 psig. Fill tanks with water, vent air, pressurize tanks, disconnect test equipment, hold pressure for two hours with no drop in pressure, and check for leaks.
 3. Testing for Nonpressure, Potable-Water Storage Tanks: Fill tanks to water operating level to ensure structural integrity and freedom from leaks. Hold water level for two hours with no drop in water level.

B. Repair or replace tanks that fail test with new tanks, and repeat until test is satisfactory.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install water storage tanks on concrete bases, level and plumb, firmly anchored. Arrange so devices needing servicing are accessible.
 1. Install horizontal tanks on fabricated steel supports and saddles.

B. Anchor tank supports and tanks to substrate.
 1. Use steel or FRP straps over or around plastic tanks.

C. Install thermometers and pressure gages on water storage tanks and piping if indicated. Thermometers and pressure gages are specified in Division 22 Section "Meters and Gages for Plumbing Piping."

D. Install the following devices on tanks where indicated:
 1. Pressure relief valves.
 2. Temperature and pressure relief valves.
 3. Vacuum relief valves.
 4. Tank vents on nonpressure tanks.
 5. Connections to accessories.

E. After installing tanks with factory finish, inspect finishes and repair damages to finishes.

3.02 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to potable-water storage tanks to allow service and maintenance.

C. Connect water piping to water storage tanks with unions or flanges and with shutoff valves. Connect tank drains with shutoff valves and discharge over closest floor drains.
 1. General-duty valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
 a. Valves NPS 2 and Smaller: Gate or ball.
 b. Valves NPS 2-1/2 and Larger: Gate or butterfly.
 c. Drain Valves: NPS 3/4 gate or ball valve. Include outlet with, or nipple in outlet with, ASME B1.20.7, 3/4-11.5NH thread for garden-hose service, threaded cap, and chain.

 2. Water Piping Connections: Make connections to dissimilar metals with dielectric fittings. Dielectric fittings are specified in Division 22 Section "Domestic Water Piping."

3.03 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.04 FIELD QUALITY CONTROL

A. Perform the following final checks before filling:
 1. Verify that air precharge in precharged tanks is correct.
 2. Test operation of tank accessories and devices.
 3. Verify that pressure relief valves have correct setting.
 a. Manually operate pressure relief valves.
 b. Adjust pressure settings.
 4. Verify that vacuum relief valves are correct size.
 a. Manually operate vacuum relief valves.
 b. Adjust vacuum settings.

B. Filling Procedures: Follow manufacturer's written procedures. Fill tanks with water to operating level.

3.05 CLEANING

A. Clean and disinfect potable-water storage tanks.

B. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed, use procedure described in AWWA C652 or as described below:
 1. Purge water storage tanks with potable water.
 2. Disinfect tanks by one of the following methods:
 a. Fill tanks with water-chlorine solution containing at least 50 ppm of chlorine. Isolate tanks and allow to stand for 24 hours.
 b. Fill tanks with water-chlorine solution containing at least 200 ppm of chlorine. Isolate tanks and allow to stand for three hours.
3. Flush tanks, after required standing time, with clean, potable water until chlorine is not present in water coming from tank.
4. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination made by authorities having jurisdiction shows evidence of contamination.

C. Prepare written reports for purging and disinfecting activities.

END OF SECTION
SECTION 22 13 16
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.

B. Related Sections include the following:
 1. Division 22 Section "Sanitary Sewerage Pumps."

1.03 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. NBR: Acrylonitrile-butadiene rubber.

D. PVC: Polyvinyl chloride plastic.

E. TPE: Thermoplastic elastomer.

1.04 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.05 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.

1.06 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.02 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.03 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. Matco-Norca, Inc.
 e. MIFAB, Inc.
 f. Mission Rubber Company; a division of MCP Industries, Inc.
 g. Stant.
 h. Tyler Pipe.

 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

C. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
SANITARY WASTE AND VENT PIPING

22 13 16 - 3

d. MIFAB, Inc.
e. Mission Rubber Company; a division of MCP Industries, Inc.
f. Stant.
g. Tyler Pipe.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

D. Cast-Iron, Hubless-Piping Couplings:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. MG Piping Products Company.

3. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.04 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Solvent Cement: ASTM D 2564.
1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.05 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Fernco Inc.
3) Mission Rubber Company; a division of MCP Industries, Inc.
4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.

c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Mission Rubber Company; a division of MCP Industries, Inc.

c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Dielectric Fittings:
 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 2. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Hart Industries International, Inc.
 4) Jomar International Ltd.
 5) Matco-Norca, Inc.
 7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 8) Wilkins; a Zurn company.

 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.
3. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Capitol Manufacturing Company.
 2) Central plastics Company.
 3) Matco-Norca, Inc.
 4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 5) Wilkins; a Zurn company.
 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 125 psig minimum at 180 deg F.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Advance Products & Systems, Inc.
 2) Calpico, Inc.
 3) Central plastics Company.
 4) Pipeline Seal and Insulator, Inc.
 b. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.

5. Dielectric Nipples:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Elster Perfection.
 2) Grinnell Mechanical Products.
 3) Matco-Norca, Inc.
 4) Precision Plumbing Products, Inc.
 5) Victaulic Company.
 b. Description:
 1) Standard: IAPMO PS 66
 2) Electroplated steel nipple.
 3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.01 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

3.02 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer’s written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain and Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow for piping NPS 2-1/2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI’s "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground PVC piping according to ASTM D 2665.

O. Install underground PVC piping according to ASTM D 2321.

P. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer’s written installation instructions.
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.03 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.

F. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

G. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.04 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD’s.
 2. In Drainage Piping: Unshielded or Shielded, nonpressure transition couplings.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.
3.05 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves:
 1. Install shutoff valve on each sewage pump discharge.
 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.06 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 6. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 8. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.
G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
2. NPS 3: 48 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

H. Install supports for vertical PVC piping every 48 inches.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.07 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Install horizontal backwater valves with cleanout cover flush with floor or in pit with pit cover flush with floor.
6. Comply with requirements for backwater valves cleanouts and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3.08 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.09 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI heavy-duty hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI heavy-duty hubless-piping couplings; and coupled joints.

D. Underground, soil, waste, and vent piping shall be any of the following:
 1. Extra Heavy or Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI heavy-duty cast-iron hubless-piping couplings; and coupled joints.
 3. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION
SECTION 22 13 19
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following sanitary drainage piping specialties:
 1. Cleanouts.
 2. Floor drains.
 3. Air-admittance valves.
 4. Roof flashing assemblies.
 5. Through-penetration firestop assemblies.
 7. Flashing materials.

B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.

1.03 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

B. HDPE: High-density polyethylene plastic.

C. PP: Polypropylene plastic.

D. PVC: Polyvinyl chloride plastic.

1.04 SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, and accessories for the following:

B. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.06 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.01 CLEANOUTS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 3. Watts Drainage Products Inc.
 4. Zurn Plumbing Products Group; Specification Drainage Operation.

2.02 FLOOR DRAINS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 3. Watts Drainage Products Inc.
 4. Zurn Plumbing Products Group; Specification Drainage Operation.

2.03 AIR-ADMITTANCE VALVES

A. Fixture Air-Admittance Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ayrlett, LLC.
 b. Durgo, Inc.
 c. Oatey.
 d. ProSet Systems Inc.
 e. RectorSeal.
 f. Studor, Inc.
 2. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
 3. Housing: Plastic.
4. Operation: Mechanical sealing diaphragm.
5. Size: Same as connected fixture or branch vent piping.

B. Wall Box:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Durgo, Inc.
 b. Oatey.
 c. RectorSeal.
 d. Studor, Inc.
2. Description: White plastic housing with white plastic grille, made for recessed installation. Include bottom pipe connection and space to contain one air-admittance valve.
3. Size: About 9 inches wide by 8 inches high by 4 inches deep.

2.04 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.
2. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch-thick, lead flashing collar and skirt extending at least 10 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 2. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.05 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ProSet Systems Inc.
2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
3. Size: Same as connected soil, waste, or vent stack.
4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
6. Special Coating: Corrosion resistant on interior of fittings.
SANITARY WASTE PIPING SPECIALTIES

2.06 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 2. Size: Same as connected waste piping.

B. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

D. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

E. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

F. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

G. Vent Caps:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.

H. Frost-Resistant Vent Terminals:
 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

I. Expansion Joints:
1. Standard: ASME A112.21.2M.
2. Body: Cast iron with bronze sleeve, packing, and gland.
3. End Connections: Matching connected piping.
4. Size: Same as connected soil, waste, or vent piping.

2.07 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft. thickness.
 2. Vent Pipe Flashing: 8 oz./sq. ft. thickness.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

F. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

G. Install fixture air-admittance valves on fixture drain piping.

H. Install stack air-admittance valves at top of stack vent and vent stack piping.

I. Install air-admittance-valve wall boxes recessed in wall.

J. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

K. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

L. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.

M. Assemble open drain fittings and install with top of hub 2 inches above floor.

N. Install deep-seal traps on floor drains and other waste outlets, if indicated.
O. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

P. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

Q. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

R. Install vent caps on each vent pipe passing through roof.

S. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

T. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

U. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

V. Install wood-blocking reinforcement for wall-mounting-type specialties.

W. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.02 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.03 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.04 LABELING AND IDENTIFYING

A. Division 22 Section "Identification for Plumbing Piping and Equipment."

3.05 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.06 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 14 13

FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

B. Related Sections:
 1. Division 22 Section "Sump Pumps" for storm drainage pumps.

1.03 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 1. Storm Drainage Piping: 10-foot head of water.

1.04 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.

1.05 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
2.02 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service and Heavy Duty classes.

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.03 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. Matco-Norca, Inc.
 e. MIFAB, Inc.
 f. Mission Rubber Company; a division of MCP Industries, Inc.
 g. Stant.
 h. Tyler Pipe.

 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

C. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company; a division of MCP Industries, Inc.
 f. Stant.
 g. Tyler Pipe.

 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

D. Cast-Iron, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. MG Piping Products Company.
3. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.04 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Solvent Cement: ASTM D 2564.
 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.05 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-piping-system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Mission Rubber Company; a division of MCP Industries, Inc.
 c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Dielectric Fittings:
 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 2. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Hart Industries International, Inc.
 4) Jomar International Ltd.
 5) Matco-Norca, Inc.
 7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 8) Wilkins; a Zurn company.
 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 150 psig at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.
 3. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Matco-Norca, Inc.
 4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 5) Wilkins; a Zurn company.
 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
3) Pressure Rating: 150 psig.
4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Advance Products & Systems, Inc.
 2) Calpico, Inc.
 3) Central Plastics Company.
 4) Pipeline Seal and Insulator, Inc.
 b. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.

5. Dielectric Nipples:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Elster Perfection.
 2) Grinnell Mechanical Products.
 3) Matco-Norca, Inc.
 4) Precision Plumbing Products, Inc.
 5) Victaulic Company.
 b. Description:
 1) Electroplated steel nipple complying with ASTM F 1545.
 2) Pressure Rating: 300 psig at 225 deg F.
 3) End Connections: Male threaded or grooved.
 4) Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.01 EARTH MOVING

 A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."
3.02 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer’s written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Storm-Drainage Piping: 1 percent downward in direction of flow.

M. Install cast-iron soil piping according to CISPI’s "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

N. Install aboveground PVC piping according to ASTM D 2665.
O. Install underground PVC piping according to ASTM D 2321.

P. Plumbing Specialties:
1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Storm Drainage Piping Specialties."
2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Storm Drainage Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.03 JOINT CONSTRUCTION

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fittings. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.
F. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

G. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.04 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
1. Install transition couplings at joints of piping with small differences in OD's.
2. In Drainage Piping: Unshielded or Shielded, nonpressure transition couplings.
4. In Underground Force-Main Piping:
 a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:
1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 Insert pipe size and Smaller: Use dielectric unions.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.05 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
5. Vertical Piping: MSS Type 8 or Type 42, clamps.
6. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
8. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at each floor.
D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

H. Install supports for vertical PVC piping every 48 inches.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.06 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

C. Connect storm drainage piping to roof drains and storm drainage specialties.
 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 2. Install horizontal backwater valves with cleanout cover flush with floor or in pit with pit cover flush with floor.
 3. Comply with requirements for backwater valves cleanouts and drains specified in Division 22 Section "Storm Drainage Piping Specialties."

D. Connect force-main piping to the following:
 1. Storm Sewer: To exterior force main.

E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
F. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.07 IDENTIFICATION

 A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.08 FIELD QUALITY CONTROL

 A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

 B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

 C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

 D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 5. Prepare reports for tests and required corrective action.

3.09 CLEANING

 A. Clean interior of piping. Remove dirt and debris as work progresses.

 B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI, heavy-duty, hubless-piping couplings; and coupled joints.

C. Aboveground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI, heavy-duty, hubless-piping couplings; and coupled joints.

D. Underground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI, heavy-duty, cast-iron, hubless-piping couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

E. Underground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI, heavy-duty, cast-iron, hubless-piping couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION
SECTION 22 14 23

STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Roof drains.
 2. Miscellaneous storm drainage piping specialties.
 3. Cleanouts.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

1.04 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.01 METAL ROOF DRAINS

A. Cast-Iron, Large-Sump, General-Purpose Roof Drains:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 c. Watts Water Technologies, Inc.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.

2.02 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Conductor Nozzles DSN-1
 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
 2. Size: Same as connected conductor.
2.03 CLEANOUTS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Josam Company.
 3. Watts Water Technologies, Inc.
 4. Zurn Plumbing Products Group; Specification Drainage Operation.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install roof drains at low points of roof areas according to roof membrane manufacturer’s written installation instructions. Roofing materials are specified in Division 07 Sections.
 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 2. Install expansion joints, if indicated, in roof drain outlets.
 3. Position roof drains for easy access and maintenance.

B. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.

3.02 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

3.03 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 14 29

SUMP PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Submersible sump pumps.
 2. Sump-pump basins and basin covers.
 3. Packaged drainage-pump units.

B. Related Section:
 1. Division 22 Section "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Wiring Diagrams: For power, signal, and control wiring.

C. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.04 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

B. Protect bearings and couplings against damage.

C. Comply with pump manufacturer’s written rigging instructions for handling.
PART 2 - PRODUCTS

2.01 SUBMERSIBLE SUMP PUMPS

A. Submersible, Fixed-Position, Single-Seal Sump Pumps:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Bell & Gossett Domestic Pump; ITT Corporation.
 b. Grundfos Pumps Corp.
 c. Liberty Pumps.
 d. Little Giant Pump Co.
 e. Weil Pump Company, Inc.
 f. Weinman Division; Crane Pumps & Systems.
 g. Zoeller Company.

2. Description: Factory-assembled and -tested sump-pump unit.
3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
4. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
5. Impeller: Statically and dynamically balanced, ASTM A 48/A 48M, Class No. 25 A cast iron design for clear wastewater handling, and keyed and secured to shaft.
7. Seal: Mechanical.
8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 a. Motor Housing Fluid: Air.

9. Controls:
 a. Enclosure: NEMA 250, Type 1.
 b. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 c. Float Guides: Pipe or other restraint for floats and rods in basins of depth greater than 60 inches.
 d. High-Water Alarm: Cover-mounted, compression-probe alarm, with electric bell; 120-V ac, with transformer and contacts for remote alarm bell.

2.02 SUMP-PUMP BASINS AND BASIN COVERS

A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.

2. Reinforcement: Mounting plates for pumps, fittings, and accessories.
3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.

2.03 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.01 EARTHWORK

A. Excavation and filling are specified in Division 31 Section "Earth Moving."

3.02 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.03 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.04 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Section "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.05 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
B. Tests and Inspections:
 1. Perform each visual and mechanical inspection.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Pumps and controls will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.06 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer’s written instructions.

3.07 ADJUSTING

A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust control set points.

END OF SECTION
SECTION 22 34 00

FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following fuel-fired water heaters:
 1. Commercial, gas-fired, storage, domestic-water heaters.
 2. Water heater accessories.

1.03 SUBMITTALS

A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. LEED Submittal:
 1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with ASHRAE/IESNA 90.1-2004, Section 7 - "Service Water Heating."

C. Shop Drawings: Diagram power, signal, and control wiring.

D. Operation and Maintenance Data: For water heaters to include in emergency, operation, and maintenance manuals.

E. Warranty: Special warranty specified in this Section.

1.04 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9" for all components that will be in contact with potable water.

1.05 COORDINATION

A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.
1.06 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired water heaters that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

 2. Warranty Period(s): From date of Substantial Completion:
 a. Household, Gas Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Two years.

PART 2 - PRODUCTS

2.01 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

A. Commercial, Gas-Fired, High-Efficiency, Storage, Domestic-Water Heaters:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. AERCO International, Inc.
 c. Lochinvar Corporation.
 d. RBI Water Heaters; a Mestek company.
 e. Rheem Manufacturing Company.
 f. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 g. State Industries.

 3. Description: Manufacturer's proprietary design to provide at least 95 percent combustion efficiency at optimum operating conditions.
 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Lining: Glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.
5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
 f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and natural-gas fuel.
 g. Temperature Control: Adjustable thermostat.
 h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

2.02 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. AMTROL Inc.
 b. Flexcon Industries.
 c. Honeywell International Inc.
 d. Pentair Pump Group (The); Myers.
 e. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 f. State Industries.
 g. Taco, Inc.

 2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

 3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

 4. Capacity and Characteristics:
 b. Capacity Acceptable: 10 gal. minimum.
 c. Air Precharge Pressure: 40 psig.
B. **Drain Pans:** Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. **Piping-Type Heat Traps:** Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. **Heat-Trap Fittings:** ASHRAE 90.2.

F. **Gas Pressure Regulators:** ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.

G. **Vacuum Relief Valves:** ANSI Z21.22/CSA 4.4-M.

H. **Domestic-Water Heater Stands:** Manufacturer’s factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

2.03 SOURCE QUALITY CONTROL

A. **Factory Tests:** Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.01 WATER HEATER INSTALLATION

A. Install commercial water heaters on concrete bases.

1. **Exception:** Omit concrete bases for commercial water heaters if installation on stand, bracket, suspended platform, or direct on floor is indicated.

2. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Install water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer’s recommended clearances. Arrange units so controls and devices needing service are accessible.
C. Install gas water heaters according to NFPA 54.

D. Install gas shutoff valves on gas supplies to gas water heaters.

E. Install gas pressure regulators on gas supplies to gas water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.

F. Install water heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains. Refer to Division 22 Section "Domestic Water Piping Specialties" for hose-end drain valves.

G. Install thermometer on outlet piping of water heaters. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

H. Install pressure gage(s) on outlet piping of commercial, fuel-fired water heater piping. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

I. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.

J. Fill water heaters with water.

3.02 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.03 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.
3.04 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial water heaters. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories, showers and sinks.
 2. Flushometers.
 3. Toilet seats.
 4. Fixture supports.
 5. Water closets.
 6. Urinals.
 7. Lavatories.
 8. Commercial sinks.

B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Security Plumbing Fixtures."
 4. Division 22 Section "Drinking Fountains and Water Coolers."
 5. Division 31 Section "Facility Water Distribution Piping" for exterior plumbing fixtures and hydrants.

1.03 DEFINITIONS

A. Accessible (Handicapped) Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

B. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

C. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

D. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

E. PVC: Polyvinyl chloride plastic.

1.04 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. LEED Submittal:
 1. Product Data for Credit WE 2, 3.1, and 3.2: Documentation indicating flow and water consumption requirements.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 4. Vitreous-China Fixtures: ASME A112.19.2M.
H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:
2. Floor Drains: ASME A112.6.3.
3. Off-Floor Fixture Supports: ASME A112.6.1M.

PART 2 - PRODUCTS

2.01 LAVATORY FAUCETS

A. Lavatory Faucets, L-1:
1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. TOTO USA, Inc.

2.02 SINK FAUCETS

A. Sink Faucets, S-1
1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. American Standard Companies, Inc.
 b. Chicago Faucets.
 c. Elkay Manufacturing Co.
 d. Just Manufacturing Company.
 e. Kohler Co.
 f. Zurn Plumbing Products Group; Commercial Brass Operation.

PLUMBING FIXTURES
22 40 00 - 3
2.03 FLUSHOMETERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings.

2.04 TOILET SEATS

A. Toilet Seats:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 b. Centoco Manufacturing Corp.
 c. Church Seats.
 d. Kohler Co.
 e. Olsonite Corp.
 f. Pressalit A/S.
 g. Sanderson Plumbing Products, Inc.; Beneke Div.
 h. Sperzel.

 2. Description: Toilet seat for water-closet-type fixture.
 a. Material: Molded, solid plastic.
 b. Configuration: Open front less cover.
 c. Size: Elongated.
 d. Hinge Type: CK, check.
 e. Class: Standard commercial.

2.05 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Piping Enclosures, <Insert drawing designation>:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. TRUEBRO, Inc.

 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

2.06 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Company.
 3. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 4. Zurn Plumbing Products Group; Specification Drainage Operation.
B. Water-Closet Supports,
 1. Description: Heavy duty combination carrier designed for accessible and standard mounting height of wall-mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

C. Urinal Supports:
 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture II, for wall-mounting, urinal-type fixture. Include steel uprights with feet.

2.07 WATER CLOSETS

A. Water Closets:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. American Standard Companies, Inc.
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Kohler Co.
 d. Sloan Valve Company.
 e. TOTO USA, Inc.

2.08 URINALS

A. Urinals:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. American Standard Companies, Inc.
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Kohler Co.
 d. Sloan Valve Company.
 e. TOTO USA, Inc.

2.09 LAVATORIES

1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. American Standard Companies, Inc.
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Kohler Co.
 d. TOTO USA, Inc.
2.10 COMMERCIAL SINKS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 1. Elkay Manufacturing Co.
 2. Just Manufacturing Company.

2.11 SERVICE SINKS

A. Basis-of-Design Product: Subject to compliance with requirements, provide [the product indicated on Drawings] <Insert manufacturer’s name; product name or designation> or a comparable product by one of the following:
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Florestone Products Co., Inc.
 d. Precast Terrazzo Enterprises, Inc.
 e. Stern-Williams Co., Inc.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install counter-mounting fixtures in and attached to casework.

D. Install fixtures level and plumb according to roughing-in drawings.
E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

F. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

G. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

H. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

I. Install toilet seats on water closets.

J. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

K. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

L. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

M. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

N. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
3.04 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.05 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.

D. Install fresh batteries in sensor-operated mechanisms.

3.06 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.07 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 47 00

DRINKING FOUNTAINS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. This Section includes the following water coolers and related components:
 1. Pressure water coolers.
 2. Fixture supports.

1.03 DEFINITIONS
 A. Accessible (Handicapped) Drinking Fountain: Fixture that can be approached and used by
 people with disabilities.
 B. Cast Polymer: Dense, cast-filled-polymer plastic.
 C. Fitting: Device that controls flow of water into or out of fixture.
 D. Fixture: Drinking fountain.

1.04 SUBMITTALS
 A. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and
 accessories.
 B. Operation and Maintenance Data: For fixtures to include in emergency, operation, and
 maintenance manuals.

1.05 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for
 intended use.
 B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable
 Buildings and Facilities" Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336,
 "Americans with Disabilities Act" for fixtures for people with disabilities.
 C. NSF Standard: Comply with NSF 61, "Drinking Water System Components–Health Effects," for
 fixture materials that will be in contact with potable water.
1.06 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filter Cartridges: Equal to 5 percent of amount installed for each type and size indicated, but no fewer than 2 of each.

PART 2 - PRODUCTS

2.01 DRINKING FOUNTAINS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings, refer to equipment schedules, or a comparable product by one of the following:
 1. Elkay Manufacturing Co.
 3. Halsey Taylor.
 4. Oasis Corporation.
 5. Sunroc Corp.

2.02 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Co.
 2. MIFAB Manufacturing, Inc.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.

B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 1. Type II: Bilevel, hanger-type carrier with three vertical uprights.
 2. Supports for Accessible Fixtures: Include rectangular, vertical, steel uprights instead of steel pipe uprights.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.

B. Examine walls and floors for suitable conditions where fixtures are to be installed.

DRINKING FOUNTAINS
22 47 00 - 2
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLICATIONS

A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.

B. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

3.03 INSTALLATION

A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.

B. Install mounting frames affixed to building construction and attach recessed water coolers to mounting frames, unless otherwise indicated.

C. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.

D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

F. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

G. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.04 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
3.05 FIELD QUALITY CONTROL

A. Drinking Fountain Testing: After installation, test for compliance with requirements and proper operation. Test and adjust controls and safeties.
 1. Remove and replace malfunctioning units and retest as specified above.
 2. Report test results in writing.

3.06 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

3.07 CLEANING

A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

END OF SECTION
SECTION 22 95 00

PLUMBING SYSTEMS COMMISSIONING

PART 1 GENERAL

1.01 DESCRIPTION

A. The purpose of this section is to specify the Contractor’s responsibilities and participation in the commissioning process relative to Division 22.

B. Commissioning testing shall be performed by the Contractor under the direction of the Commissioning Authority (CxA). Commissioning is primarily the responsibility of the CxA, with start-up, testing and support for commissioning the responsibility of the Contractors. The commissioning process does not relieve the Contractor from participation in the process or diminish the role and obligations to complete all portions of work in a satisfactory and fully operational manner.

C. Work of Division 22 includes:
 1. Testing and start-up of the plumbing equipment.
 2. Providing qualified personnel to assist in commissioning tests, including seasonal testing.
 3. Completion and endorsement of Pre-functional Test Forms provided by the CxA to assure that Division 22 equipment and systems are fully operational and ready for functional testing.
 4. Providing equipment, materials and labor necessary to correct deficiencies found during the commissioning process which fulfill contract and warranty requirements.
 5. Providing operation and maintenance information and as-built drawings to the CxA for review, verification and organization, prior to distribution.
 6. Providing assistance to the CxA to develop, edit and document system operation descriptions.
 7. Providing training for the systems specified in this Division with coordination of Owner by the CxA.

1.02 RELATED WORK

A. All installation, testing and start-up procedures and documentation requirements specified within Division 22.

B. Section 01 91 00 – Commissioning

C. Section 25 95 00 – Building Automation System Commissioning.

D. Commissioning Functional Test Procedures that required participation of the Division 22 Contractors.
E. Cooperate with the CxA in the following manner:
1. All testing and start-up procedures and documentation requirements specified within Division 1 and Division 22 and related portions of this project.
2. Allow sufficient time before final completion dates so plumbing systems start-up, test and balance, and commissioning can be accomplished.
3. Provide labor and material to make corrections when required without undue delay.
4. Put all plumbing equipment into full operation and continue the operation of the same during each working day of the testing, balancing and commissioning.

PART 2 PRODUCTS

2.01 TEST EQUIPMENT

A. Standard test equipment for commissioning will be provided by the CxA.
B. Division 22 Contractor shall provide standard and specialized test equipment as necessary to test and start up the plumbing systems.
C. Proprietary test equipment required by the manufacturer, whether specified or not, shall be provided by the manufacturer of the equipment through the installing contractor. Manufacturer shall provide the test equipment, demonstrate its use and assist the CxA in the commissioning process.
D. The Contractor shall provide all equipment, software and all test programming support as necessary to start up, calibrate, debug and verify proper function of the control/facility management system. This equipment and software shall be provided for use by the test, adjust and balance contractor and the CxA.

PART 3 EXECUTION

3.01 WORK PRIOR TO COMMISSIONING

A. Complete all phases of work so the systems can be energized, started, tested and otherwise commissioned. Division 22 has primary start-up responsibilities with obligations to compete systems, including all sub-systems, so they are functional. This includes the complete installation of all equipment materials, raceways, wire, terminations, controls, etc., per the Contract Documents and related directives, clarifications, change orders, etc.

B. A Commissioning Plan will be developed by the CxA. Upon request of the CxA, the Contractor shall provide assistance and consultation. The Commissioning Plan will be developed prior to completion of the installation. The Contractor is obligated to assist the CxA in preparing the Commissioning Plan by providing all necessary information pertaining to the actual equipment and installation. If Contractor-initiated system changes have been made that alter the commissioning process, the CxA will notify the
A/E and the Contractor may be obligated to compensate the CxA to test the revised product or confirm the suitability/unsuitability of the substitution or revision.

C. Specific pre-commissioning responsibilities of Division 22 are as follows:

1. Normal start-up services required bringing each system into a fully operational state. This includes motor rotational check cleaning, lug tightening, control sequences of operation, etc. The CxA will not begin the commissioning process until each system is complete, including normal contractor start-up and debugging.

2. The Contractor shall complete the Pre-functional Test Forms on the systems to be commissioned to verify that all aspects of the work are complete in compliance with the plans and Specifications. Contractor start-up forms may be substituted for the pre-functional test forms with prior approval by the CxA.

3. Factory start-up services will be provided for key equipment and systems specified in Division 22. Factory start-up activities to be documented and submitted. The Contractor shall coordinate this work with the manufacturer and the CxA.

4. Notify Construction Manager and CxA when systems are ready for functional testing.

D. Commissioning is intended to begin upon completion of a system. Commissioning may proceed prior to the completion of systems and/or sub-systems, if expediting this work is in the best interests of the Owner. Commissioning activities and schedule will be coordinated with the Contractor. Start of commissioning before system completion will not relieve the Contractor from completing those systems as per the schedule.

3.02 PARTICIPATION IN COMMISSIONING

A. Commissioning testing shall be performed by the Contractor under the direction of the Commissioning Authority (CxA). Provide skilled technicians to start up and debug all systems within this division of work. These same technicians shall be made available to assist the CxA in completing the commissioning program as it relates to each system and their technical specialty. Work schedules, time required for testing, etc., will be requested by the CxA and coordinated by the Contractor. Contractor will ensure the qualified technician(s) are available and present during the agreed-upon schedules and of sufficient duration to complete the necessary tests, adjustments and/or problem resolutions.

B. System problems and discrepancies may require additional technician time, CxA time, redesign and/or reconstruction of systems and system components. The additional technician time shall be made available for the subsequent commissioning periods until the required system performance is obtained.

C. The CxA reserves the right to judge the appropriateness and qualifications of the technicians relative to each item of equipment, system and/or sub-system. Qualifications of technicians include expert knowledge relative to the specific equipment involved, adequate documentation and tools to service/commission the equipment and an attitude/willingness to work with the CxA to get the job done. A
liaison or intermediary between the CxA and qualified factory representatives does not constitute the availability of a qualified technician for purpose of this work.

D. The test, adjust and balance subcontractor shall provide a draft report with final test measurements to the CxA and shall provide qualified technicians and instruments needed for balancing to demonstrate a sample up to 100% of measurements until specified results are achieved.

3.03 WORK TO RESOLVE DEFICIENCIES

A. In some systems, maladjustments, misapplied equipment, and/or deficient performance under varying loads will result in a system that does not meet the original design intent. Correction of work will be completed under direction of the A/E, with input from the Contractor, equipment supplier and CxA. Whereas all members will have input and the opportunity to discuss, debate and work out problems, the A/E will have final jurisdiction on the necessary work to be done to achieve performance.

3.04 ADDITIONAL COMMISSIONING

A. Additional commissioning activities may be required after system adjustments, replacements, etc., are completed. The Contractor, suppliers and CxA shall include a reasonable reserve to complete this work as part of their standard contractual obligations.

B. The cost of compensation of the CxA for repeat testing or troubleshooting due to systems that do not meet specified performance shall be borne by the Contactor.

C. Corrective work shall be completed in a timely fashion to permit the timely completion of the commissioning process. Experimentation to render system performance will be permitted. If the CxA deems the experimentation work to be ineffective or untimely to the commissioning process, the CxA will notify the A/E indicating the nature of the problem, expected steps to be taken and the deadline for completion of activities. If the deadline passes without resolution of the problem, the Owner reserves the right to obtain supplementary services and equipment to resolve the problem. Costs incurred to solve the problems in an expeditious manner will the Contractor’s responsibility.

3.05 SEASONAL COMMISSIONING AND OCCUPANCY VARIATIONS

A. Seasonal commissioning pertains to testing under full-load conditions during peak heating and peak cooling seasons, as well as part-load conditions in the spring and fall. Initial commissioning will be done as soon as contract work is completed, regardless of season. Subsequent commissioning may be undertaken at any time thereafter to ascertain adequate performance during the different seasons.

B. All equipment and systems will be tested and commissioned in a peak season to observe full-load performance. Heating equipment will be tested during winter design extremes. Cooling equipment will be tested during summer design extremes, with a fully occupied building. Each Contractor and supplier will be responsible to participate in the initial
and the alternate peak season test of the systems required to demonstrate performance.

C. Subsequent commissioning may be required under conditions of minimum and/or maximum occupancy or use. All equipment and systems affected by occupancy variations will be tested and commissioned at the minimum and peak loads to observe system performance. Each Contractor and supplier will be responsible to participate in the occupancy sensitive testing of systems to provide verification of adequate performance.

3.06 SYSTEMS TO BE COMMISSIONED

A. Systems to be commissioned include:

1. Domestic hot water heater
2. Recirculation pumps
3. Sump Pumps

3.07 POST-OCCUPANCY REVIEW

A. Subsequent commissioning will be required approximately 10 months after substantial completion of the project. The facility operation will be reviewed using BAS trend data, limited functional testing and interviews with the O&M staff and occupants. The Contractor will assist the post-occupancy review by setting up BAS data trends, downloading those trends and assisting with functional testing as needed. The commissioning activities may identify items for correction by the contractor. [to be included with enhanced LEED commissioning]

3.08 TRAINING

A. This Contractor will be required to participate in the training of the Owner’s engineering and maintenance staff for each system and the related components. Training may be conducted in a classroom setting, with system and component documentation, and suitable classroom training aids, or in the field with the specific equipment. The type of training will be per the Owner’s option.

B. The Contractor will be responsible for the generic training as well as instructing the Owner’s staff on the system peculiarities specific to this project.

3.09 SYSTEMS DOCUMENTATION

A. In addition to the requirements of Division 1, update Contract Documents to incorporate field changes and revisions to system designs to account for actual constructed configurations. All drawings shall be red-lined on two (2) sets. Division 22 as-built drawings shall include updated architectural floor plans and the individual electrical systems in relation to actual building layout.

B. Maintain as-built red-lines on the job site as required in Division 1. Given the size and complexity of this project, red-lining of the drawings at completion of construction
based on memory of key personnel is not satisfactory. Continuous and regular redlining and/or posting of drawings is considered essential and mandatory.

C. In addition to the stated requirements for operation and maintenance data, provide one (1) copy of equipment technical literature, operation and maintenance literature and shop drawings to the CA as soon as they are available. This requirement is for review of these documents prior to distribution of multiple copies for the Owner’s final use.

END OF SECTION
SECTION 23 05 00

COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 5. HVAC demolition.
 6. Equipment installation requirements common to equipment sections.
 7. Painting and finishing.
 8. Concrete bases.

1.03 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.
 2. PE: Polyethylene plastic.
 3. PVC: Polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.04 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.06 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.02 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.03 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2 maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
H. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.04 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Available Manufacturers:
 a. Eslon Thermoplastics.

B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Available Manufacturers:
 a. Thompson Plastics, Inc.

C. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Available Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

2.05 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Available Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 1. Available Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Available Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 1. Available Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 1. Available Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.06 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.01 HVAC DEMOLITION

A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
3. **Ducts to Be Removed:** Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

4. **Ducts to Be Abandoned in Place:** Cap or plug ducts with same or compatible ductwork material.

5. **Equipment to Be Removed:** Disconnect and cap services and remove equipment.

6. **Equipment to Be Removed and Reinstalled:** Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.

7. **Equipment to Be Removed and Salvaged:** Disconnect and cap services and remove equipment and deliver to Owner.

C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.02 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw.
 l. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.03 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASMEB1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.04 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.05 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.
3.06 PAINTING

A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.07 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.08 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.09 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.
3.10 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 23 05 13

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.03 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.01 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
B. Comply with NEMA MG 1 unless otherwise indicated.
C. Comply with IEEE 841 for severe-duty motors.

2.02 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 6000 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.03 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1; and, where noted, Premium, as defined by NEMA.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.04 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.05 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 23 05 16

EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Flexible, ball-joint, packed expansion joints.
2. Slip-joint packed expansion joints.
3. Expansion-compensator packless expansion joints.
5. Metal-bellows packless expansion joints.
6. Rubber packless expansion joints.
8. Pipe loops and swing connections.
9. Alignment guides and anchors.

1.03 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Maintenance Data: For expansion joints to include in maintenance manuals.

1.05 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. ASME Boiler and Pressure Vessel Code: Section IX.
PART 2 - PRODUCTS

2.01 PACKED EXPANSION JOINTS

A. Flexible, Ball-Joint, Packed Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advanced Thermal Systems, Inc.
 b. Hyspan Precision Products, Inc.
 4. Design: For 360-degree rotation and angular deflection.
 5. Minimum Pressure Rating: 250 psig at 400 deg F.
 6. Angular Deflection for NPS 6 and Smaller: 30 degree minimum.
 7. Angular Deflection for NPS 8 and Larger: 15 degree minimum.
 8. End Connections for NPS 2 and Smaller: Threaded.

B. Slip-Joint Packed Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. Advanced Thermal Systems, Inc.
 c. Hyspan Precision Products, Inc.
 4. Design: With internal guide and injection device for repacking under pressure. Include drip connection if used for steam piping.
 5. Configuration: Single joint with base and double joint with base class(es) unless otherwise indicated.
 6. End Connections: Flanged or weld ends to match piping system.

2.02 PACKLESS EXPANSION JOINTS

A. Metal, Expansion-Compensator Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. Flexicraft Industries.
 c. Flex Pression Ltd.
d. Flex-Weld, Inc.
e. Hyspan Precision Products, Inc.
f. Metraflex, Inc.
g. Senior Flexonics Pathway.
h. Unaflex.
i. Unisource Manufacturing, Inc.

2. Minimum Pressure Rating: 150 psig unless otherwise indicated.
3. Configuration for Copper Tubing: Two-ply, phosphor-bronze bellows with copper pipe ends.
 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.

4. Configuration for Steel Piping: Two-ply, stainless-steel bellows; steel-pipe end connections; and carbon-steel shroud.
 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Flanged.

B. Rubber, Expansion-Compensator Packless Expansion Joints:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Amber/Booth Company, Inc.; a div. of Vibration Isolation Products of Texas, Inc.
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. General Rubber Corporation.
 e. Mason Industries, Inc.; Mercer Rubber Co.
 f. Proco Products, Inc.
 g. Tozen Corporation.
 h. Unaflex.
 i. Unisource Manufacturing, Inc.

3. Minimum Pressure Rating: 150 psig at 170 deg F unless otherwise indicated.
4. End Connections for NPS 2 and Smaller: Threaded.

C. Flexible-Hose Packless Expansion Joints:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Flex Pression Ltd.
 d. Metraflex, Inc.
 e. Unisource Manufacturing, Inc.
2. **Description**: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. **Flexible Hose**: Corrugated-metal inner hoses and braided outer sheaths.

4. **Expansion Joints for Copper Tubing NPS 2 and Smaller**: Copper-alloy fittings with solder-joint end connections.
 a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 b. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.

5. **Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4**: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.

6. **Expansion Joints for Steel Piping NPS 2 and Smaller**: Carbon-steel fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.

7. **Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6**: Carbon-steel fittings with flanged end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
 b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.

D. **Metal-Bellows Packless Expansion Joints**:
1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. American BOA, Inc.
 c. Badger Industries, Inc.
 d. Expansion Joint Systems, Inc.
 e. Flex-Hose Co., Inc.
 f. Flexicraft Industries.
 g. Flex Pression Ltd.
 h. Flex-Weld, Inc.
 i. Flo Fab inc.
 j. Hyspan Precision Products, Inc.
 k. Metraflex, Inc.
 l. Proco Products, Inc.
m. Senior Flexonics Pathway.

n. Tozen Corporation.

do. Unaflex.

p. Unisource Manufacturing, Inc.

q. Universal Metal Hose; a subsidiary of Hyspan Precision Products, Inc.

r. U.S. Bellows, Inc.

s. WahlcoMetroflex.

3. Type: Circular, corrugated bellows with external tie rods.

5. Configuration: Single joint class(es) unless otherwise indicated.

 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: threaded.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.

 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 and Larger: Flanged.

E. Rubber Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Amber/Booth Company, Inc.; a div. of Vibration Isolation Products of Texas, Inc.
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. Flex-Weld, Inc.
 e. Garlock Sealing Technologies.
 f. General Rubber Corporation.
 g. Mason Industries, Inc.; Mercer Rubber Co.
 h. Metraflex, Inc.
 i. Proco Products, Inc.
 j. Red Valve Company, Inc.
 k. Tozen Corporation.
 l. Unaflex.
 m. Unisource Manufacturing, Inc.

4. Arch Type: Single or multiple arches with external control rods.

5. Spherical Type: Single or multiple spheres with external control rods.

6. Minimum Pressure Rating for NPS 1-1/2 to NPS 4: 150 psig at 220 deg F.
7. Minimum Pressure Rating for NPS 5 and NPS 6: 140 psig at 200 deg F.
8. Material for Fluids Containing Gas, Hydrocarbons, or Oil: Buna-N.
9. Material for Water: BR.

2.03 GROOVED-JOINT EXPANSION JOINTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Anvil International, Inc.
 2. Shurjoint Piping Products.
 3. Victaulic Company.

B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.

C. Standard: AWWA C606, for grooved joints.

D. Nipples: ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.

E. Couplings: Flexible type for steel-pipe dimensions. Include ferrous housing sections, EPDM gasket suitable for cold and hot water, and bolts and nuts.

2.04 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Adsco Manufacturing LLC.
 b. Advanced Thermal Systems, Inc.
 c. Flex-Hose Co., Inc.
 d. Flexicraft Industries.
 e. Flex-Weld, Inc.
 f. Hyspan Precision Products, Inc.
 g. Metraflex, Inc.
 h. Senior Flexonics Pathway.
 i. Unisource Manufacturing, Inc.
 j. U.S. Bellows, Inc.

 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:
 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.01 EXPANSION-JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install packed-type expansion joints with packing suitable for fluid service.

C. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

D. Install rubber packless expansion joints according to FSA-NMEJ-702.

E. Install grooved-joint expansion joints to grooved-end steel piping

3.02 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.

C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.
3.03 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install one guide on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:
 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION
SECTION 23 05 17
SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

PART 2 - PRODUCTS

2.01 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.02 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
1. Underdeck Clamp: Clamping ring with setscrews.

2.03 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.04 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.05 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.01 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.02 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.
B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.03 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.04 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.05 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves.

 2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping
 and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping
 and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.
 b. Piping NPS 6 and Larger: Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION
SECTION 23 05 18
ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.01 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.02 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.02 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 23 05 19

METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.
 5. Test plugs.
 6. Test-plug kits.

B. Related Sections:
 1. Division 23 Section "Facility Natural-Gas Piping" for gas meters.
 2. Division 23 Section "Steam and Condensate Heating Piping" for steam and condensate meters.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Wiring Diagrams: For power, signal, and control wiring.

C. Product Certificates: For each type of meter and gage, from manufacturer.

D. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.01 LIQUID-IN-GLASS THERMOMETERS

A. Plastic-Case, Compact-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Flo Fab Inc.
 b. Miljoco Corporation.
 c. Tel-Tru Manufacturing Company.
4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.02 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.03 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell’s internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.04 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
c. Ernst Flow Industries.
d. Flo Fab Inc.
e. Marsh Bellofram.
f. Miljoco Corporation.
g. Noshok.
h. Palmer Wahl Instrumentation Group.
i. REOTEMP Instrument Corporation.
j. Tel-Tru Manufacturing Company.
k. Trerice, H. O. Co.
l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
m. Weiss Instruments, Inc.
n. WIKA Instrument Corporation - USA.
o. Winters Instruments - U.S.

3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.05 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Siphons: Loop-shaped section of brass pipe with NPS 1/4 pipe threads.

C. Valves: Brass ball, with NPS 1/4, ASME B1.20.1 pipe threads.

2.06 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Flow Design, Inc.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Company, Inc.
6. Trerice, H. O. Co.
7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
8. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion into piping tee fitting.
C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.07 TEST-PLUG KITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flow Design, Inc.
 4. Peterson Equipment Co., Inc.
 5. Sisco Manufacturing Company, Inc.
 6. Trerice, H. O. Co.
 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 8. Weiss Instruments, Inc.

B. Furnish one test-plug kit(s) containing two thermometers, one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.

D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.

F. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install valve and snubber in piping for each pressure gage for fluids.

I. Install test plugs in piping tees.

J. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic boiler.
 3. Two inlets and two outlets of each chiller.
 4. Inlet and outlet of each hydronic coil in air-handling units.
 5. Two inlets and two outlets of each hydronic heat exchanger.
 6. Outside-, return-, supply-, and mixed-air ducts.

K. Install pressure gages in the following locations:
 1. Discharge of each pressure-reducing valve.
 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 3. Suction and discharge of each pump.

3.02 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.03 ADJUSTING
A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.04 THERMOMETER SCHEDULE
A. Thermometers at inlet and outlet of each hydronic zone shall be the following:
 1. Test plug with chlorosulfonated polyethylene synthetic self-sealing rubber inserts.

B. Thermometers at inlet and outlet of each hydronic boiler shall be the following:

C. Thermometers at inlets and outlets of each chiller shall be the following:

D. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be one of the following:

E. Thermometers at inlets and outlets of each hydronic heat exchanger shall be one of the following:

F. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be the following:

G. Thermometer stems shall be of length to match thermowell insertion length.

3.05 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 0 to 150 deg F.
B. Scale Range for Condenser-Water Piping: 0 to 150 deg F.
C. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.
D. Scale Range for Air Ducts: Minus 40 to plus 110 deg F.

3.06 PRESSURE-GAGE SCHEDULE

A. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be one of the following:
 1. Liquid-filled, direct-mounted, metal case.
 2. Test plug with chlorosulfonated polyethylene synthetic self-sealing rubber inserts.

B. Pressure gages at suction and discharge of each pump shall be one of the following:
 1. Liquid-filled, direct-mounted, metal case.

3.07 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 0 to 160 psi.
B. Scale Range for Condenser-Water Piping: 0 to 160 psi.
C. Scale Range for Heating, Hot-Water Piping: 0 to 160 psi.

END OF SECTION
SECTION 23 05 23
GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.
 5. Bronze lift check valves.
 8. Iron, grooved-end swing-check valves.
 11. Chainwheels.

B. Related Sections:
 1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
 2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.03 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

1.04 SUBMITTALS

A. Product Data: For each type of valve indicated.
1.05 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS FOR VALVES

A. Refer to HVAC valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
 4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.02 BRASS BALL VALVES

A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. DynaQuip Controls.
 d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 e. Hammond Valve.
 f. Jamesbury; a subsidiary of Metso Automation.
 g. Jomar International, LTD.
 h. Kitz Corporation.
 i. Legend Valve.
 j. Marwin Valve; a division of Richards Industries.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Red-White Valve Corporation.
 n. RuB Inc.

 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.
2.03 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.04 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 150 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Bray Controls; a division of Bray International.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; a division of Cooper Cameron Corp.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. DeZurik Water Controls.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Milwaukee Valve Company.
 k. NIBCO INC.
 l. Norriseal; a Dover Corporation company.
 m. Red-White Valve Corporation.
 n. Spence Strainers International; a division of CIRCOR International.
2. **GENERAL-DUTY VALVES FOR HVAC PIPING**

 o. Tyco Valves & Controls; a unit of Tyco Flow Control.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 2. **Description:**
 a. **Standard:** MSS SP-67, Type I.
 b. **CWP Rating:** 150 psig.
 c. **Body Design:** Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. **Body Material:** ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. **Seat:** EPDM.
 f. **Stem:** One- or two-piece stainless steel.
 g. **Disc:** Aluminum bronze.

2.05 **IRON, GROOVED-END BUTTERFLY VALVES**

 A. **175 CWP, Iron, Grooved-End Butterfly Valves:**
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.
 2. **Description:**
 a. **Standard:** MSS SP-67, Type I.
 b. **CWP Rating:** 175 psig.
 c. **Body Material:** Coated, ductile iron.
 d. **Stem:** Two-piece stainless steel.
 e. **Disc:** Coated, ductile iron.
 f. **Seal:** EPDM.

2.06 **BRONZE LIFT CHECK VALVES**

 A. **Class 125, Lift Check Valves with Bronze Disc:**
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 2. **Description:**
 a. **Standard:** MSS SP-80, Type 1.
 b. **CWP Rating:** 200 psig.
 c. **Body Design:** Vertical flow.
 d. **Body Material:** ASTM B 61 or ASTM B 62, bronze.
 e. **Ends:** Threaded.
 f. **Disc:** Bronze.
2.07 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.08 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited
 to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Sure Flow Equipment Inc.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.
2. **Description:**
 a. **Standard:** MSS SP-71, Type I.
 b. **NPS 2-1/2 to NPS 12, CWP Rating:** 200 psig.
 c. **NPS 14 to NPS 24, CWP Rating:** 150 psig.
 d. **Body Design:** Clear or full waterway.
 e. **Body Material:** ASTM A 126, gray iron with bolted bonnet.
 f. **Ends:** Flanged.
 g. **Trim:** Bronze.
 h. **Gasket:** Asbestos free.

2.09 **IRON, GROOVED-END SWING CHECK VALVES**

A. **300 CWP, Iron, Grooved-End Swing Check Valves:**
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.

 2. **Description:**
 a. **CWP Rating:** 300 psig.
 b. **Body Material:** ASTM A 536, ductile iron.
 c. **Seal:** EPDM.
 d. **Disc:** Spring operated, ductile iron or stainless steel.

2.10 **IRON, CENTER-GUIDED CHECK VALVES**

A. **Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:**
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. APCO Willamette Valve and Primer Corporation.
 c. Crispin Valve.
 d. DFT Inc.
 e. Flo Fab Inc.
 f. GA Industries, Inc.
 g. Hammond Valve.
 h. Metraflex, Inc.
 i. Milwaukee Valve Company.
 j. Mueller Steam Specialty; a division of SPX Corporation.
 k. NIBCO INC.
 l. Spence Strainers International; a division of CIRCOR International.
 m. Sure Flow Equipment Inc.
 n. Val-Matic Valve & Manufacturing Corp.
 o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Style: Compact wafer.
 f. Seat: Bronze.

2.11 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 j. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

2.12 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Babbitt Steam Specialty Co.
 2. Roto Hammer Industries.
 3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 2. Attachment: For connection to butterfly valve stems.
 3. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve. Include zinc coating.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.02 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for butterfly valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

3.03 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.04 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball or butterfly valves.
 3. Throttling Service: Globe, ball, or butterfly valves.
4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal-seat check valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 6. For Steel Piping, NPS 5 and Larger: Flanged ends.
 7. For Grooved-End Steel Piping: Valve ends may be grooved.

3.05 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Angle Valves: Class 125, bronze disc.
 2. Ball Valves: Two piece, full port, brass or bronze with brass trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.
 4. Bronze Globe Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:
 2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP.
 3. Iron Swing Check Valves: Class 125, metal seats.
 4. Iron, Grooved-End Check Valves, NPS 3 to NPS 12: 300 CWP.
 5. Iron, Center-Guided Check Valves: Class 125, compact-wafer, metal seat.

3.06 CONDENSER-WATER VALVE SCHEDULE

A. Pipe NPS 2-1/2 and Larger:
 2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP.
 3. Iron Swing Check Valves: Class 125, metal seats.
 4. Iron, Grooved-End Check Valves, NPS 3 to NPS 12: 300 CWP.
 5. Iron, Center-Guided Check Valves: Class 125, compact-wafer, metal seat.

3.07 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
1. Bronze Angle Valves: Class 125, bronze disc.
2. Ball Valves: Two piece, full port, brass or bronze with brass trim.
3. Bronze Swing Check Valves: Class 125, bronze disc.
4. Bronze Globe Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:
2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron, Grooved-End Check Valves, NPS 3 to NPS 12: 300 CWP.
5. Iron, Center-Guided Check Valves: Class 125, compact-wafer, metal seat.

END OF SECTION
SECTION 23 05 29
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following hangers and supports for HVAC system piping and equipment:
 1. Steel pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Equipment supports.

B. Related Sections include the following:
 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-protection piping.
 3. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 4. Division 23 Section "Vibration Controls for HVAC Piping and Equipment" for vibration isolation devices.
 5. Division 23 Section(s) "Metal Ducts" and "Nonmetal Ducts" for duct hangers and supports.

1.03 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.04 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
1.05 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.

1.06 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code-Steel."

B. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code--Steel."
 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.02 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Available Manufacturers:
 1. AAA Technology & Specialties Co., Inc.
 2. Bergen-Power Pipe Supports.
 4. Carpenter & Paterson, Inc.
 5. Empire Industries, Inc.
 6. ERICO/Michigan Hanger Co.
 7. Globe Pipe Hanger Products, Inc.
 8. Grinnell Corp.
 9. GS Metals Corp.
 11. PHD Manufacturing, Inc.
 12. PHS Industries, Inc.
 13. Piping Technology & Products, Inc.
 14. Tolco Inc.
C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.03 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.04 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Available Manufacturers:
 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 3. GS Metals Corp.
 5. Thomas & Betts Corporation.
 6. Tolco Inc.
 7. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.05 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Available Manufacturers:
 1. Carpenter & Paterson, Inc.
 2. ERICO/Michigan Hanger Co.
 3. PHS Industries, Inc.
 4. Pipe Shields, Inc.
 5. Rilco Manufacturing Company, Inc.
 6. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.06 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Available Manufacturers:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head.
 c. Masterset Fastening Systems, Inc.
 d. MKT Fastening, LLC.
 e. Powers Fasteners.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Available Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2. Where practical, use existing anchors.

2.07 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.08 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 3 - EXECUTION

3.01 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.

3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. C-Clamps (MSS Type 23): For structural shapes.

7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.

8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners instead of building attachments where required in concrete construction.

3.02 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.
J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

M. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood inserts.
 6. Insert Material: Length at least as long as protective shield.
 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.03 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.04 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.05 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.06 PAINTING

A. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
HEAT TRACING FOR HVAC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes heat tracing with the following electric heating cables:
 1. Self-regulating, parallel resistance.

1.03 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each type of product indicated.
 1. Schedule heating capacity, length of cable, spacing, and electrical power requirement for each electric heating cable required.

B. Shop Drawings: For electric heating cable. Include plans, sections, details, and attachments to other work.

C. Operation and Maintenance Data: For electric heating cables to include in operation and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.04 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.05 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace electric heating cable that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: 10 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.01 SELF-REGULATING, PARALLEL-RESISTANCE HEATING CABLES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. BH Thermal Corporation.
 2. Chromalox, Inc.; Wiegard Industrial Division; Emerson Electric Company.
 3. Delta-Therm Corporation.
 4. Easy Heat Inc.
 6. Pyrotenax; a division of Tyco Thermal Controls.
 7. Raychem; a division of Tyco Thermal Controls.
 8. Thermon Manufacturing Co.
 9. Trasor Corp.

B. Heating Element: Pair of parallel No. 16 AWG, tinned stranded copper bus wires embedded in crosslinked conductive polymer core, which varies heat output in response to temperature along its length. Terminate with waterproof, factory-assembled nonheating leads with connectors at one end, and seal the opposite end watertight. Cable shall be capable of crossing over itself once without overheating.

C. Electrical Insulating Jacket: Flame-retardant polyolefin.

D. Cable Cover: Tinned-copper braid, and polyolefin outer jacket with UV inhibitor.

E. Maximum Operating Temperature (Power On): 150 deg F.

F. Maximum Exposure Temperature (Power Off): 185 deg F.

G. Maximum Operating Temperature: 300 deg F.

H. Capacities and Characteristics:
 1. Maximum Heat Output: as recommended by manufacturer for application.
 2. Volts: 277 V.
 3. Phase: 1
 4. Hertz: 60
 5. Minimum Circuit Ampacity: Coordinate with electrical
 6. Maximum Overcurrent Protection: Coordinate with electrical

2.02 CONTROLS

A. Remote bulb unit with adjustable temperature range from 30 to 50 deg F.

B. Snap action; open-on-rise, single-pole switch with minimum current rating adequate for connected cable.
C. Remote bulb on capillary, resistance temperature device, or thermistor for directly sensing pipe-wall temperature.

D. Corrosion-resistant, waterproof control enclosure.

2.03 ACCESSORIES

A. Cable Installation Accessories: Fiberglass tape, heat-conductive putty, cable ties, silicone end seals and splice kits, and installation clips all furnished by manufacturer, or as recommended in writing by manufacturer.

B. Warning Labels: Refer to Division 23 Section "Identification for HVAC Piping and Equipment."

C. Warning Tape: Continuously printed "Electrical Tracing"; vinyl, at least 3 mils thick, and with pressure-sensitive, permanent, waterproof, self-adhesive back.
 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine surfaces and substrates to receive electric heating cables for compliance with requirements for installation tolerances and other conditions affecting performance.
 1. Ensure surfaces and pipes in contact with electric heating cables are free of burrs and sharp protrusions.
 2. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install electric heating cable across expansion joints according to manufacturer's written recommendations using slack cable to allow movement without damage to cable.

B. Install electric heating cables after piping has been tested and before insulation is installed.

C. Install electric heating cables according to IEEE 515.1.

D. Install insulation over piping with electric cables according to Division 23 Section "HVAC Insulation."

E. Install warning tape on piping insulation where piping is equipped with electric heating cables.

F. Set field-adjustable switches and circuit-breaker trip ranges.

G. Protect installed heating cables, including nonheating leads, from damage.
3.03 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Testing: Perform tests after cable installation but before application of coverings such as insulation, wall or ceiling construction, or concrete.
 1. Test cables for electrical continuity and insulation integrity before energizing.
 2. Test cables to verify rating and power input. Energize and measure voltage and current simultaneously.

B. Repeat tests for continuity, insulation resistance, and input power after applying thermal insulation on pipe-mounting cables.

C. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION
SECTION 23 05 48

VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
 1. Isolation pads.
 2. Isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Freestanding and restrained spring isolators.
 5. Housed spring mounts.
 7. Spring hangers with vertical-limit stops.
 8. Pipe riser resilient supports.
 9. Resilient pipe guides.
 10. Inertia, vibration isolation equipment bases.

1.03 DEFINITIONS

 C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.04 PERFORMANCE REQUIREMENTS

 A. Wind-Restraint Loading:
 1. Basic Wind Speed: 90 mph.
 2. Building Classification Category: III.
 3. Minimum 10 lb/sq. ft. multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.
1.05 SUBMITTALS

A. Product Data: For the following:
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.

1.06 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.01 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ace Mountings Co., Inc.
 2. Amber/Booth Company, Inc.
 4. Isolation Technology, Inc.
 7. Vibration Eliminator Co., Inc.
 8. Vibration Isolation.

B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 1. Resilient Material: Oil- and water-resistant neoprene.
C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Restrained Mounts: All-directional mountings with seismic restraint.
 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

E. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

F. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

G. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
2. Base: Factory drilled for bolting to structure.
3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.

H. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

I. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

J. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.
K. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch- thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.02 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 1. Powder coating on springs and housings.
 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 3. Baked enamel or powder coat for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.03 VIBRATION-CONTROL DEVICE INSTALLATION

A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
B. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance
 between anchor and adjacent surface exceeds 0.125 inch.

C. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum
 of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

D. Install cables so they do not bend across edges of adjacent equipment or building structure.

E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide
 resilient media between anchor bolt and mounting hole in concrete base.

F. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to
 provide resilient media where equipment or equipment-mounting channels are attached to
 wall.

G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at
 flanges of beams, at upper truss chords of bar joists, or at concrete members.

H. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for
 anchors. Do not damage existing reinforcing or embedded items during coring or
 drilling. Notify the structural engineer if reinforcing steel or other embedded items are
 encountered during drilling. Locate and avoid prestressed tendons, electrical and
 telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved
 full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty
 sleeve anchors shall be installed with sleeve fully engaged in the structural element to
 which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to
 installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole
 and progressing toward the surface in such a manner as to avoid introduction of air
 pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior
 applications.

3.04 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.

4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

7. Measure isolator deflection.

8. Verify snubber minimum clearances.

10. Air-Mounting System Operational Test: Test the compressed-air leveling system.

11. Test and adjust air-mounting system controls and safeties.

12. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.05 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust air-spring leveling mechanism.

D. Adjust active height of spring isolators.

E. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.06 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 01 Section "Demonstration And Training."

END OF SECTION
SECTION 23 05 53
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Valve tags.
 6. Warning tags.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

1.04 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.01 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.02 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.03 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.04 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.05 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.06 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 1. Size: 3 by 5-1/4 inches minimum.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.01 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.02 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.
3.03 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:
 1. Chilled-Water Piping:
 a. Background Color: Blue.
 2. Condenser-Water Piping:
 a. Background Color: Green.
 3. Heating Water Piping:
 a. Background Color: Red.

3.04 DUCT LABEL INSTALLATION

A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.05 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 c. Hot Water: 1-1/2 inches, square.
 d. Gas: 1-1/2 inches, square.

2. Valve-Tag Color:
 b. Condenser Water: Green.
 c. Hot Water: Natural.
 d. Gas: Yellow.

3. Letter Color:
 c. Hot Water: Black.
 d. Gas: Black.

3.06 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.
 b. Variable-flow hydronic systems.
 c. Primary-secondary hydronic systems.

1.03 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.04 SUBMITTALS

A. LEED Submittal:

B. Qualification Data: Within 30 days of Contractor’s Notice to Proceed, submit documentation that the TAB contractor and this Project’s TAB team members meet the qualifications specified in "Quality Assurance" Article.

E. Certified TAB reports.

F. Sample report forms.

G. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.05 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC, NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC, NEBB or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC, NEBB or TABB as a TAB technician.

B. TAB Conference: Meet with Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. TAB Report Forms: Use standard TAB contractor's forms approved by Commissioning Authority.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.06 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
1.07 COORDINATION

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Sections "Metal Ducts" and "Nonmetal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.
I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.02 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance, smoke, and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.03 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.04 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer’s outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.05 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer’s written instructions and calculating factors.
D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.06 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
 3. Set terminal units at full-airflow condition.
 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 5. Adjust terminal units for minimum airflow.
 6. Measure static pressure at the sensor.
 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.07 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
3.08 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:

1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer’s pump curve at zero flow and verify that the pump has the intended impeller size.
 a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Commissioning Authority and comply with requirements in Division 23 Section "Hydronic Pumps."

2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 a. Monitor motor performance during procedures and do not operate motors in overload conditions.

3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.

1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.

J. Check settings and operation of each safety valve. Record settings.

3.09 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first and then balance the secondary circuits.

3.11 PROCEDURES FOR HEAT EXCHANGERS

A. Measure water flow through all circuits.

B. Adjust water flow to within specified tolerances.

C. Measure inlet and outlet water temperatures.

D. Measure inlet steam pressure.

E. Check settings and operation of safety and relief valves. Record settings.

3.12 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.
B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.13 PROCEDURES FOR CHILLERS
A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.

3.14 PROCEDURES FOR COOLING TOWERS
A. Shut off makeup water for the duration of the test, and verify that makeup and blowdown systems are fully operational after tests and before leaving the equipment. Perform the following tests and record the results:
1. Measure condenser-water flow to each cell of the cooling tower.
2. Measure entering- and leaving-water temperatures.
3. Measure wet- and dry-bulb temperatures of entering air.
4. Measure wet- and dry-bulb temperatures of leaving air.
5. Measure condenser-water flow rate recirculating through the cooling tower.
6. Measure cooling-tower spray pump discharge pressure.
7. Adjust water level and feed rate of makeup water system.
8. Measure flow through bypass.

3.15 PROCEDURES FOR CONDENSING UNITS
A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record compressor data.

3.16 PROCEDURES FOR BOILERS
A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.
3.17 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:
1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.
7. Air pressure drop.

B. Measure, adjust, and record the following data for each electric heating coil:
1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load and at each incremental stage.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

3.18 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent.
4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.19 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.20 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect’s name and address.
 6. Engineer’s name and address.
 7. Contractor’s name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report.
 Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Settings for supply-air, static-pressure controller.
 g. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Water flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.
E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
h. Tube size in NPS.

i. Tube and fin materials.

j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Water flow rate in gpm.
 i. Water pressure differential in feet of head or psig.
 j. Entering-water temperature in deg F.
 k. Leaving-water temperature in deg F.
 l. Refrigerant expansion valve and refrigerant types.
 m. Refrigerant suction pressure in psig.
 n. Refrigerant suction temperature in deg F.
 o. Inlet steam pressure in psig.

G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer’s factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer’s serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
j. Manifold pressure in psig.
k. High-temperature-limit setting in deg F.
l. Operating set point in Btu/h.
m. Motor voltage at each connection.
n. Motor amperage for each phase.
o. Heating value of fuel in Btu/h.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Air flow rate in cfm.
 i. Face area in sq. ft..
 j. Minimum face velocity in fpm.

 2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Air flow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

 2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.
3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated air flow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual air flow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

K. Air-Terminal-Device Reports:
 1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

 2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary air flow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final air flow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.
L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.
 2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

M. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.
 p. Seal type.
 2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.
N. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.21 INSPECTIONS

A. Initial Inspection:
 1. After testing and balancing are complete, operate each system and randomly check
 measurements to verify that the system is operating according to the final test and
 balance readings documented in the final report.
 2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure water flow of at least 5 percent of terminals.
 c. Measure room temperature at each thermostat/temperature sensor. Compare
 the reading to the set point.
 d. Verify that balancing devices are marked with final balance position.
 e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:
 1. After initial inspection is complete and documentation by random checks verifies that
 testing and balancing are complete and accurately documented in the final report,
 request that a final inspection be made by Commissioning Authority.
 2. The TAB contractor's test and balance engineer shall conduct the inspection in the
 presence of Commissioning Authority.
 3. Commissioning Authority shall randomly select measurements, documented in the final
 report, to be rechecked. Rechecking shall be limited to either 10 percent of the total
 measurements recorded or the extent of measurements that can be accomplished in a
 normal 8-hour business day.
 4. If rechecks yield measurements that differ from the measurements documented in the
 final report by more than the tolerances allowed, the measurements shall be noted as
 "FAILED."
 5. If the number of "FAILED" measurements is greater than 10 percent of the total
 measurements checked during the final inspection, the testing and balancing shall be
 considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails,
 proceed as follows:
 1. Recheck all measurements and make adjustments. Revise the final report and balancing
 device settings to include all changes; resubmit the final report and request a second
 final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB
 contractor to complete TAB Work according to the Contract Documents and deduct the
 cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.
3.22 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION
SECTION 23 07 00
HVAC INSULATION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Insulation Materials:
 a. Calcium silicate.
 b. Cellular glass.
 c. Flexible elastomeric.
 d. Mineral fiber.
 2. Adhesives.
 3. Mastics.
 4. Lagging adhesives.
 5. Sealants.
 6. Factory-applied jackets.
 7. Field-applied jackets.
 8. Tapes.
 10. Corner angles.

B. Related Sections:
 1. Division 22 Section "Plumbing Insulation."
 2. Division 23 Section "Metal Ducts" for duct liners.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For adhesives and sealants, including printed statement of VOC content.

C. Qualification Data: For qualified Installer.

1.04 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-
response characteristics indicated, as determined by testing identical products per ASTM E 84,
by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label
insulation and jacket materials and adhesive, mastic, tapes, and cement material containers,
with appropriate markings of applicable testing and inspecting agency.
1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed
index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed
index of 150 or less.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate
ASTM standard designation, type and grade, and maximum use temperature.

1.06 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in
Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct
Installer for duct insulation application, and equipment Installer for equipment insulation
application. Before preparing piping and ductwork Shop Drawings, establish and maintain
clearance requirements for installation of insulation and field-applied jackets and finishes and
for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.07 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after
installing and testing heat tracing. Insulation application may begin on segments that have
satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area
of construction.

PART 2 - PRODUCTS

2.01 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be
applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of
less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Industrial Insulation Group (The); Thermo-12 Gold.
 2. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
 3. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

G. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cell-U-Foam Corporation; Ultra-CUF.
 b. Pittsburgh Corning Corporation; Foamglas Super K.
 2. Block Insulation: ASTM C 552, Type I.
 3. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Board Insulation: ASTM C 552, Type IV.
 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

H. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

I. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
J. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

K. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000 Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

L. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Knauf Insulation; Permawick Pipe Insulation.
 b. Owens Corning; VaporWick Pipe Insulation.

M. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
2.02 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-97.
 c. Marathon Industries, Inc.; 290.
 d. Mon-Eco Industries, Inc.; 22-30.
 e. Vimasco Corporation; 760.

 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Cellular-Glass Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-96.

 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA Inc.; Aeroseal.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Chemical Company (The); 739, Dow Silicone.
 d. Speedline Corporation; Speedline Vinyl Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.03 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 70 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.

 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.

2.04 SEALANTS

A. Joint Sealants:
 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-76.
 b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
 f. Vimasco Corporation; 750.

 2. Joint Sealants for Polystyrene Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-70.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.

 3. Materials shall be compatible with insulation materials, jackets, and substrates.
 4. Permanently flexible, elastomeric sealant.
 5. Service Temperature Range: Minus 100 to plus 300 deg F.
6. Color: White or gray.
7. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK and Metal Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; CP-76.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.05 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.
2.06 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 c. Proto PVC Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
 5. Factory-fabricated tank heads and tank side panels.

D. Metal Jacket:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
2.07 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 b. Compac Corp.; 130.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 d. Venture Tape; 1506 CW NS.
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.
D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 b. Compac Corp.; 120.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 d. Venture Tape; 3520 CW.
 2. Width: 2 inches.
 3. Thickness: 3.7 mils.
 5. Elongation: 5 percent.
 6. Tensile Strength: 34 lbf/inch in width.

2.08 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.
 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.
2. **Cupped-Head, Capacitor-Discharge-Weld Pins:** Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; Cupped Head Weld Pin.
 3) Midwest Fasteners, Inc.; Cupped Head.
 4) Nelson Stud Welding; CHP.

3. **Metal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. **Baseplate:** Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. **Spindle:** Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. **Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) GEMCO; Nylon Hangers.
 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 b. **Baseplate:** Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 c. **Spindle:** Nylon, 0.106-inch diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
5. **Self-Sticking-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 2) GEMCO; Press and Peel.
 3) Midwest Fasteners, Inc.; Self Stick.
 b. **Baseplate:** Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. **Spindle:** Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 d. **Adhesive-backed base** with a peel-off protective cover.

6. **Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) AGM Industries, Inc.; RC-150.
 2) GEMCO; R-150.
 3) Midwest Fasteners, Inc.; WA-150.
 4) Nelson Stud Welding; Speed Clips.
 b. **Protect ends** with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

7. **Nonmetal Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) GEMCO.
 2) Midwest Fasteners, Inc.

C. **Staples:** Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. **Wire:** 0.080-inch nickel-copper alloy.
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Childers Products.
 c. PABCO Metals Corporation.
 d. RPR Products, Inc.
2.09 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.03 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.04 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

D. Insulation Installation at Floor Penetrations:
1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Pipe: Install insulation continuously through floor penetrations.
3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

HVAC INSULATION
23 07 00 - 16
3.05 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels:
 Secure insulation with adhesive and anchor pins and speed washers.
 1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 3. Protect exposed corners with secured corner angles.
 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
 7. Stagger joints between insulation layers at least 3 inches.
 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
B. Insulation Installation on Pumps:
 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 2. Fabricate boxes from galvanized steel, at least 0.040 inch thick.
 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.06 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.07 CALCIUM SILICATE INSULATION INSTALLATION

A. Insulation Installation on Valves and Pipe Specialties:
 1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 2. Install insulation to flanges as specified for flange insulation application.
 3. Finish valve and specialty insulation same as pipe insulation.

3.08 CELLULAR-GLASS INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.

For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.09 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.10 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer’s recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.11 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer’s recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.12 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.13 FINISHES

A. Duct, Equipment, and Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.14 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the “Piping Insulation Schedule, General” Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.15 DUCT INSULATION SCHEDULE, GENERAL

A. Ducts Requiring Insulation:
1. Indoor, concealed supply and outdoor air.
2. Indoor, concealed return located in nonconditioned space.
3. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
4. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
5. Outdoor, concealed supply and return.

B. Items Not Insulated:
1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Indoor exhaust duct upstream of the isolation damper.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

3.16 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval duct insulation shall be the following:
1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

B. Concealed, rectangular duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

3.17 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor’s option.

B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.

C. Heat-exchanger (water-to-water for cooling service) insulation shall be the following:
1. Mineral-Fiber Board: 2 inch thick and 2-lb/cu. ft. nominal density.
D. Chilled-water pump insulation shall be one of the following:
 1. Cellular Glass: 3 inches thick.

E. Condenser-water pump insulation shall be one of the following:
 1. Cellular Glass: 2 inches thick.

F. Heating-hot-water pump insulation shall be one of the following:
 1. Calcium Silicate: 3 inches thick.
 2. Cellular Glass: 3 inches thick.

G. Chilled-water expansion/compression tank insulation shall be one of the following:

H. Heating-hot-water expansion/compression tank insulation shall be one of the following:
 1. Calcium Silicate: 2 inches thick.

I. Chilled-water air-separator insulation shall be one of the following:
 1. Cellular Glass: 2 inches thick.

J. Heating-hot-water air-separator insulation shall be one of the following:
 1. Calcium Silicate: 3 inches thick.
 2. Cellular Glass: 3 inches thick.

K. Piping system filter-housing insulation shall be one of the following:
 1. Cellular Glass: 3 inches thick.

3.18 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.19 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:

B. Chilled Water and Brine, above 40 Deg F:
1. 1-1/2" and Smaller: Insulation shall one of be the following:
 a. Cellular Glass: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
2. 2" and Larger: Insulation shall be one of the following:
 b. Mineral-Fiber Preformed Pipe, Type I: 1-1/2 inches thick.

C. Condenser-Water Supply and Return:
1. NPS 12 and Smaller: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inches thick.

D. Heating-Hot-Water Supply and Return, 200 Deg F and below:
1. 1-1/2" and Smaller: Insulation shall be the following:
 a. Cellular Glass: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
2. 2" and Larger: Insulation shall be one of the following:
 a. Cellular Glass: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

E. Refrigerant Suction and Hot-Gas Piping:
1. All Pipe Sizes: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

F. Dual-Service Heating and Cooling, 40 to 200 Deg F:
1. 1-1/2" and Smaller: Insulation shall be one of the following:
 a. Cellular Glass: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
2. 2" and Larger: Insulation shall be one of the following:
 a. Cellular Glass: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.
G. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 1-1/2 inches thick.
 c. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.20 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. PVC: 20 mils thick.

E. Equipment, Concealed:
 1. None.

F. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 1. Aluminum, Stucco Embossed: 0.016 inch thick.

G. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 1. Aluminum, Stucco Embossed with 1-1/4-Inch-Deep Corrugations: 0.032 inch thick.

H. Piping, Concealed:
 1. PVC: 20 mils thick.

I. Piping, Exposed:
 1. PVC: 20 mils thick.

END OF SECTION
SECTION 23 08 00

COMMISSIONING OF HVAC

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.

B. Related Sections:
 1. Division 01 Section "General Commissioning Requirements" for general commissioning process requirements.

1.03 DEFINITIONS

A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.

B. CxA: Commissioning Authority.

D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.04 ALLOWANCES

A. Labor, instrumentation, tools, and equipment costs for technicians for the performance of commissioning testing are covered by the "Schedule of Allowances" Article in Division 01 Section "Allowances."

1.05 UNIT PRICES

A. Commissioning testing allowance may be adjusted up or down by the "List of Unit Prices" Article in Division 01 Section "Unit Prices" when actual man-hours are computed at the end of commissioning testing.

1.06 CONTRACTOR'S RESPONSIBILITIES

A. Perform commissioning tests at the direction of the CxA.

B. Attend construction phase controls coordination meeting.

C. Attend testing, adjusting, and balancing review and coordination meeting.
D. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

E. Provide information requested by the CxA for final commissioning documentation.

F. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

1.07 CxA’S RESPONSIBILITIES

A. Provide Project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

B. Direct commissioning testing.

C. Verify testing, adjusting, and balancing of Work are complete.

1.08 COMMISSIONING DOCUMENTATION

A. Provide the following information to the CxA for inclusion in the commissioning plan:
 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 4. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed.
 5. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.
 6. Test and inspection reports and certificates.
 7. Corrective action documents.
 8. Verification of testing, adjusting, and balancing reports.

1.09 SUBMITTALS

A. Certificates of readiness.

B. Certificates of completion of installation, prestart, and startup activities.
PART 3 - EXECUTION

3.01 TESTING PREPARATION

A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.

B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.

C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.

D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

E. Inspect and verify the position of each device and interlock identified on checklists.

F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.02 TESTING AND BALANCING VERIFICATION

A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.

B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.

C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 1. The CxA will notify testing and balancing Contractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 2. The testing and balancing Contractor shall use the same instruments (by model and serial number) that were used when original data were collected.
 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
 4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.
3.03 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.

B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. The CxA along with the HVAC&R Contractor, testing and balancing Contractor, and HVAC&R Instrumentation and Control Contractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.

E. Tests will be performed using design conditions whenever possible.

F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

G. The CxA may direct that set points be altered when simulating conditions is not practical.

H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

I. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.04 HVAC&R SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

A. Boiler Testing and Acceptance Procedures: Testing requirements are specified in Division 23 boiler Sections. Provide submittals, test data, inspector record, and boiler certification to the CxA.

B. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls." Assist the CxA with preparation of testing plans.
C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in Division 23 piping Sections. HVAC&R Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:

1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings key to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.

2. Description of equipment for flushing operations.
4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.

D. Energy Supply System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of gas systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

E. Refrigeration System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of chillers, cooling towers, refrigerant compressors and condensers, heat pumps, and other refrigeration systems. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

F. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, steam, and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.

G. Vibration and Sound Tests: Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation and seismic controls.

END OF SECTION
MECHANICAL SYSTEMS COMMISSIONING

PART 1 GENERAL

1.01 DESCRIPTION

A. The purpose of this section is to specify the Contractor’s responsibilities and participation in the commissioning process relative to Division 23.

B. Commissioning testing shall be performed by this division Contractor and directed by the Commissioning Authority (CxA). Commissioning is primarily the responsibility of the CxA, with start-up, testing and support for commissioning the responsibility of the Contractors. The commissioning process does not relieve the Contractor from participation in the process or diminish the role and obligations to complete all portions of work in a satisfactory and fully operational manner.

C. Work of Division 23 includes:
 1. Testing and start-up of the HVAC equipment.
 2. Providing qualified personnel to perform the commissioning/functional tests, including seasonal testing, to verify equipment/system performance.
 3. Completion and endorsement of Pre-functional Test Forms provided by the CxA to assure that Division 23 equipment and systems are fully operational and ready for functional testing.
 4. Providing equipment, materials and labor necessary to correct deficiencies found during the commissioning process which fulfill contract and warranty requirements.
 5. Providing operation and maintenance information and as-built drawings to the CxA for review, verification and organization, prior to distribution.
 6. Providing assistance to the CxA to develop, edit and document system operation descriptions.
 7. Providing training for the systems specified in this Division with coordination of Owner by the CxA.

1.02 RELATED WORK

A. All installation, testing and start-up procedures and documentation requirements specified within Division 23.

B. Section 01 91 00 – Commissioning

C. Commissioning Functional Test Procedures that required participation of the Division 23 Contractors.

D. Cooperate with the CxA in the following manner:
 1. All testing and start-up procedures and documentation requirements specified within Division 1 and Division 23 and related portions of this project.
 2. Allow sufficient time before final completion dates so mechanical systems start-up, test and balance and commissioning can be accomplished.
3. Provide labor and material to make corrections when required without undue delay.
4. Put all heating, ventilation and air conditioning systems and equipment into full operation and continue the operation of the same during each working day of the testing, balancing and commissioning.
5. Include the costs of the dampers, replacement sheaves and belts, as required, to obtain satisfactory system performance as requested by the test and balance contractor or the CxA.
6. Provide test holes in ducts and plenums where directed or necessary for pitot tubes for taking air measurements and to balance the air systems. Test holes shall be provided with an approved removable plug or seal. At each location where ducts or plenums are insulated, test holes shall be provided with an approved extension with plug fitting.
7. Provide pressure/temperature taps where directed or necessary for taking measurements to test and balance hydronic systems.

PART 2 PRODUCTS

2.01 TEST EQUIPMENT

A. Standard test equipment for commissioning will be provided by the CxA.
B. Division 23 Contractor shall provide standard and specialized test equipment as necessary to test and start up the HVAC systems.
C. Proprietary test equipment required by the manufacturer, whether specified or not, shall be provided by the manufacturer of the equipment through the installing contractor. Manufacturer shall provide the test equipment, demonstrate its use and assist the CxA in the commissioning process.
D. The Contractor shall provide all equipment, software and all test programming support as necessary to start up, calibrate, debug and verify proper function of the control/facility management system. This equipment and software shall be provided for use by both the test and balance contractor and the CxA.

PART 3 EXECUTION

3.01 WORK PRIOR TO COMMISSIONING

A. Complete all phases of work so the systems can be energized, started, tested and otherwise commissioned. Division 23 has primary start-up responsibilities with obligations to compete systems, including all sub-systems, so they are functional. This includes the complete installation of all equipment materials, raceways, wire, terminations, controls, etc., per the Contract Documents and related directives, clarifications, change orders, etc.
B. A Commissioning Plan will be developed by the CxA. Upon request of the CxA, the Contractor shall provide assistance and consultation. The Commissioning Plan will be developed prior to completion of the installation. The Contractor is obligated to assist the CxA in preparing the Commissioning Plan by providing all necessary information pertaining to the actual equipment and installation. If Contractor-initiated system changes have been made that alter the commissioning process, the CxA will notify the A/E and the Contractor may be obligated to compensate the CxA to test the revised product or confirm the suitability/unsuitability of the substitution or revision.

C. Specific pre-commissioning responsibilities of Division 23 are as follows:
 1. Normal start-up services required bringing each system into a fully operational state. This includes motor rotational check cleaning, lug tightening, control sequences of operation, etc. The CxA will not begin the commissioning process until each system is complete, including normal contractor start-up and debugging.
 2. The Contractor shall complete the Pre-functional Test Forms on the systems to be commissioned to verify that all aspects of the work are complete in compliance with the plans and Specifications. Contractor start-up forms may be substituted for the Pre-functional Test Forms with prior approval by the CxA.
 3. Factory start-up services will be provided for key equipment and systems specified in Division 23. Factory start-up activities to be documented and submitted. The Contractor shall coordinate this work with the manufacturer and the CxA.
 4. Notify Construction Manager and CxA when systems are ready for functional testing.

D. Commissioning is intended to begin upon completion of a system. Commissioning may proceed prior to the completion of systems and/or sub-systems, if expediting this work is in the best interests of the Owner. Commissioning activities and schedule will be coordinated with the Contractor. Start of commissioning before system completion will not relieve the Contractor from completing those systems as per the schedule.

3.02 PARTICIPATION IN COMMISSIONING

A. Commissioning testing shall be performed by this division Contractor and directed by the Commissioning Authority (CxA). Provide skilled technicians to start up and debug all systems within this division of work. These same technicians shall be made available to assist the CxA in completing the commissioning program as it relates to each system and their technical specialty. Work schedules, time required for testing, etc., will be requested by the CxA and coordinated by the Contractor. Contractor will ensure the qualified technician(s) are available and present during the agreed-upon schedules and of sufficient duration to complete the necessary tests, adjustments and/or problem resolutions.

B. System problems and discrepancies may require additional technician time, CxA time, redesign and/or reconstruction of systems and system components. The additional technician time shall be made available for the subsequent commissioning periods until the required system performance is obtained.
C. The CxA reserves the right to judge the appropriateness and qualifications of the technicians relative to each item of equipment, system and/or sub-system. Qualifications of technicians include expert knowledge relative to the specific equipment involved, adequate documentation and tools to service/commission the equipment and an attitude/willingness to work with the CxA to get the job done. A liaison or intermediary between the CxA and qualified factory representatives does not constitute the availability of a qualified technician for purpose of this work.

D. The test, adjust and balance subcontractor shall provide a draft report with final test measurements to the CxA and shall provide qualified technicians and instruments needed for balancing to demonstrate a sample of up to 100% of measurements until specified results are achieved.

3.03 WORK TO RESOLVE DEFICIENCIES

A. In some systems, maladjustments, misapplied equipment, and/or deficient performance under varying loads will result in a system that does not meet the original design intent. Correction of work will be completed under direction of the A/E, with input from the Contractor, equipment supplier and CxA. Whereas all members will have input and the opportunity to discuss, debate and work out problems, the A/E will have final jurisdiction on the necessary work to be done to achieve performance.

B. Corrective work shall be completed in a timely fashion to permit the timely completion of the commissioning process. Experimentation to render system performance will be permitted. If the CxA deems the experimentation work to be ineffective or untimely as it relates to the commissioning process, the CxA will notify the A/E indicating the nature of the problem, expected steps to be taken and the deadline for completion of activities. If the deadline(s) pass without resolution of the problem, the Owner reserves the right to obtain supplementary services and/or equipment to resolve the problem. Costs incurred to solve the problems in an expeditious manner will be the Installing Contractor's responsibility except where they are a result of design issues.

3.04 ADDITIONAL COMMISSIONING

A. Additional commissioning activities may be required after system adjustments, replacements, etc., are completed. The Contractor, suppliers and CxA shall include a reasonable reserve to complete this work as part of their standard contractual obligations.

B. The cost of compensation of the CxA for repeat testing or troubleshooting due to systems that do not meet specified performance shall be borne by the Contractor.

3.05 SEASONAL COMMISSIONING AND OCCUPANCY VARIATIONS

A. Seasonal commissioning pertains to testing under full-load conditions during peak heating and peak cooling seasons, as well as part-load conditions in the spring and fall. Initial commissioning will be done as soon as contract work is completed, regardless of season. Subsequent commissioning may be undertaken at any time thereafter to ascertain adequate performance during the different seasons.
B. All equipment and systems will be tested and commissioned in a peak season to observe full-load performance. Heating equipment will be tested during winter design extremes. Cooling equipment will be tested during summer design extremes, with a fully occupied building. Each Contractor and supplier will be responsible to participate in the initial and the alternate peak season test of the systems required to demonstrate performance.

C. Subsequent commissioning may be required under conditions of minimum and/or maximum occupancy or use. All equipment and systems affected by occupancy variations will be tested and commissioned at the minimum and peak loads to observe system performance. Each Contractor and supplier will be responsible to participate in the occupancy sensitive testing of systems to provide verification of adequate performance.

3.06 SYSTEMS TO BE COMMISSIONED

A. Systems to be commissioned include:
1. Supply air systems
2. Relief air systems
3. Heat Recovery systems
4. Exhaust air systems
5. Hot Water systems
6. Chilled Water systems
7. DX Cooling systems
8. In-Slab Radiant Systems
9. Heat Pump Systems
10. Chilled Beam Systems
11. Control and monitoring systems
12. Sensors
13. Controlled devices
14. Stand-alone or packaged controls
15. Local loop control panels
16. Network controls
17. Field interface panels
18. Operator interface/graphics software and terminals
19. Central processing units
20. Printers
21. Basic software routines
22. Software loop tuning

3.07 POST-OCCUPANCY REVIEW

A. Subsequent commissioning will be required approximately 10 months after substantial completion of the project. The facility operation will be reviewed using BAS trend data, limited functional testing and interviews with the O&M staff and occupants. The Contractor will assist the post-occupancy review by setting up BAS data trends, downloading those trends and assisting with functional testing as needed. The commissioning activities may identify items for correction by the contractor.
3.08 TRAINING

A. This Contractor will be required to participate in the training of the Owner’s engineering and maintenance staff for each system and the related components. Training may be conducted in a classroom setting, with system and component documentation, and suitable classroom training aids, or in the field with the specific equipment. The type of training will be per the Owner’s option.

B. The Contractor will be responsible for the generic training as well as instructing the Owner’s staff on the system peculiarities specific to this project.

3.09 SYSTEMS DOCUMENTATION

A. In addition to the requirements of Division 1, update Contract Documents to incorporate field changes and revisions to system designs to account for actual constructed configurations. All drawings shall be red-lined on two (2) sets. Division 23 as-built drawings shall include updated architectural floor plans and the individual electrical systems in relation to actual building layout.

B. Maintain as-built red-lines on the job site as required in Division 1. Given the size and complexity of this project, red-lining of the drawings at completion of construction based on memory of key personnel is not satisfactory. Continuous and regular red-lining and/or posting of drawings is considered essential and mandatory.

C. In addition to the stated requirements for operation and maintenance data, provide one (1) copy of equipment technical literature, operation and maintenance literature and shop drawings to the Commissioning Authority as soon as they are available. This requirement is for review of these documents prior to distribution of multiple copies for the Owner’s final use.

END OF SECTION
SECTION 23 09 00

INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

B. Related Sections include the following:
 1. Division 23 Section "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
 2. Division 23 Section "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.03 DEFINITIONS

A. DDC: Direct digital control.

B. I/O: Input/output.

C. MS/TP: Master slave/token passing.

D. PC: Personal computer.

E. PID: Proportional plus integral plus derivative.

F. RTD: Resistance temperature detector.

1.04 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:
 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
 5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.

8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 a. Water Temperature: Plus or minus 1 deg F.
 b. Water Flow: Plus or minus 5 percent of full scale.
 c. Water Pressure: Plus or minus 2 percent of full scale.
 d. Space Temperature: Plus or minus 1 deg F.
 e. Ducted Air Temperature: Plus or minus 1 deg F.
 f. Outside Air Temperature: Plus or minus 2 deg F.
 g. Dew Point Temperature: Plus or minus 3 deg F.
 h. Temperature Differential: Plus or minus 0.25 deg F.
 i. Relative Humidity: Plus or minus 5 percent.
 j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 l. Airflow (Terminal): Plus or minus 10 percent of full scale.
 m. Air Pressure (Space): Plus or minus 0.01-inch wg.
 n. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 o. Carbon Monoxide: Plus or minus 5 percent of reading.
 p. Carbon Dioxide: Plus or minus 50 ppm.
 q. Electrical: Plus or minus 5 percent of reading.

1.05 SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 2. Wiring Diagrams: Power, signal, and control wiring.
 3. Details of control panel faces, including controls, instruments, and labeling.
 4. Written description of sequence of operation.
 5. Schedule of dampers including size, leakage, and flow characteristics.
 6. Schedule of valves including flow characteristics.
 7. DDC System Hardware:
 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.

8. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.

9. Controlled Systems:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 c. Written description of sequence of operation including schematic diagram.
 d. Points list.

C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.

D. Software and Firmware Operational Documentation: Include the following:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
 5. Software license required by and installed for DDC workstations and control systems.

E. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

F. Qualification Data: For Installer and manufacturer.

G. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 5. Calibration records and list of set points.

1.06 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with ASHRAE 135 for DDC system components.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.08 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment with Division 28 Section "Intrusion Detection" to achieve compatibility with equipment that interfaces with that system and with building master clock.

C. Coordinate equipment with Division 28 Section "Access Control" to achieve compatibility with equipment that interfaces with that system.

D. Coordinate equipment with Division 27 Section "Clock Systems" to achieve compatibility with equipment that interfaces with that system.

E. Coordinate equipment with Division 28 Section "PLC Electronic Detention Monitoring and Control Systems" to achieve compatibility with equipment that interfaces with that system.

F. Coordinate equipment with Division 26 Section "Network Lighting Controls" to achieve compatibility with equipment that interfaces with that system.

G. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.

H. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

I. Coordinate equipment with Division 26 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.

J. Coordinate equipment with Division 26 Section "Panelboards" to achieve compatibility with starter coils and annunciation devices.

K. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.

L. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."
1.09 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Replacement Materials: One replacement diaphragm or relay mechanism for each unique valve motor, controller, thermostat, and positioning relay.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.02 CONTROL SYSTEM

A. Manufacturers:
 1. Johnson Controls, Inc.; Controls Group.

B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

C. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

D. Control system shall include the following:
 1. Building intrusion detection system specified in Division 28 Section "Intrusion Detection."
 2. Building clock control system specified in Division 27 Section "Clock Systems."
 3. Building lighting control system specified in Division 26 Section "Network Lighting Controls."
 4. Fire alarm system specified in Division 28 Section "Fire Detection and Alarm."
2.03 DDC EQUIPMENT

A. Operator Workstation: One PC-based microcomputer(s) with minimum configuration as follows:
1. Motherboard: With 8 integrated USB 2.0 ports, integrated Intel Pro 10/100 (Ethernet), integrated audio, bios, and hardware monitoring.
2. Processor: Intel Pentium 4, 1.6 GHz.
3. Random-Access Memory: 512 MB.
4. Graphics: Video adapter, minimum 1280 x 1024 pixels, 64-MB video memory, with TV out.
7. Floppy-Disk Drive: 1.44 MB.
8. Hard-Disk Drive: 80 GB.
9. CD-ROM Read/Write Drive: 48x24x48.
10. Mouse: Three button, optical.
12. Operating System: Microsoft Windows XP Professional with high-speed Internet access.
 a. ASHRAE 135 Compliance: Workstation shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

13. Printer: Black-and-white, laser-jet type as follows:
 a. Print Head: 1200 x 1200 dpi resolution.
 c. Print Speed: Minimum of 120 characters per second.

14. Application Software:
 a. I/O capability from operator station.
 b. System security for each operator via software password and access levels.
 c. Automatic system diagnostics; monitor system and report failures.
 d. Database creation and support.
 e. Automatic and manual database save and restore.
 f. Dynamic color graphic displays with up to 10 screen displays at once.
 g. Custom graphics generation and graphics library of HVAC equipment and symbols.
 h. Alarm processing, messages, and reactions.
 i. Trend logs retrievable in spreadsheets and database programs.
 j. Alarm and event processing.
 k. Object and property status and control.
 l. Automatic restart of field equipment on restoration of power.
 m. Data collection, reports, and logs. Include standard reports for the following:
 1) Current values of all objects.
 2) Current alarm summary.
 3) Disabled objects.
 4) Alarm lockout objects.
 5) Logs.
 n. Custom report development.
 o. Utility and weather reports.
p. Workstation application editors for controllers and schedules.
q. Maintenance management.

15. Custom Application Software:
 a. English language oriented.
 b. Full-screen character editor/programming environment.
 c. Allow development of independently executing program modules with debugging/simulation capability.
 d. Support conditional statements.
 e. Support floating-point arithmetic with mathematic functions.
 f. Contains predefined time variables.

B. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 d. Software applications, scheduling, and alarm processing.
 e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
 3. Standard Application Programs:
 a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
 c. Chiller Control Programs: Control function of condenser-water reset, chilled-water reset, and equipment sequencing.
 d. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; runtime totalization; and security access.
 e. Remote communications.
 f. Maintenance management.
 g. Units of Measure: Inch-pound and SI (metric).
 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

C. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.

2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.

3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.

4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

D. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
 7. Universal I/Os: Provide software selectable binary or analog outputs.

E. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 1. Output ripple of 5.0 mV maximum peak to peak.
 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.

F. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 1. Minimum dielectric strength of 1000 V.
 3. Minimum transverse-mode noise attenuation of 65 dB.
 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.04 UNITARY CONTROLLERS

A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.

2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.

3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.

4. Enclosure: Dustproof rated for operation at 32 to 120 deg F.

2.05 ALARM PANELS

A. Unitized cabinet with suitable brackets for wall or floor mounting. Fabricate of 0.06-inch-thick, furniture-quality steel or extruded-aluminum alloy, totally enclosed, with hinged doors and keyed lock and with manufacturer's standard shop-painted finish. Provide common keying for all panels.

B. Indicating light for each alarm point, single horn, acknowledge switch, and test switch, mounted on hinged cover.
 1. Alarm Condition: Indicating light flashes and horn sounds.
 2. Acknowledge Switch: Horn is silent and indicating light is steady.
 3. Second Alarm: Horn sounds and indicating light is steady.
 4. Alarm Condition Cleared: System is reset and indicating light is extinguished.
 5. Contacts in alarm panel allow remote monitoring by independent alarm company.

2.06 ANALOG CONTROLLERS

A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.

B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.

C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.

D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.
E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.
 1. Remote-control-point adjustment shall be plus or minus 20 percent of sensor span, input signal of 3 to 13 psig.
 2. Proportional band shall extend from 2 to 20 percent for 5 psig.
 3. Authority shall be 20 to 200 percent.
 4. Air-supply pressure of 18 psig, input signal of 3 to 15 psig, and output signal of zero to supply pressure.
 5. Gages: 1-1/2 inches in diameter, 2.5 percent wide-scale accuracy, and range to match transmitter input or output pressure.

2.07 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.

B. Thermistor Temperature Sensors and Transmitters:
 1. Available Manufacturers:
 a. BEC Controls Corporation.
 b. Ebtron, Inc.
 c. Heat-Timer Corporation.
 d. I.T.M. Instruments Inc.
 e. Johnson Controls, Inc.
 f. MAMAC Systems, Inc.
 g. RDF Corporation.
 2. Accuracy: Plus or minus 0.5 deg F at calibration point.
 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 5. Averaging Elements in Ducts: 36 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft..
 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
 7. Room Sensor Cover Construction: Manufacturer’s standard locking covers.
 a. Set-Point Adjustment: Exposed.
 b. Set-Point Indication: Exposed.
 c. Thermometer: Exposed Spiral bimetal.
 e. Orientation: Vertical.
8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

C. RTDs and Transmitters:
1. Available Manufacturers:
 a. BEC Controls Corporation.
 b. Johnson Controls, Inc.
 c. MAMAC Systems, Inc.
 d. RDF Corporation.
2. Accuracy: Plus or minus 0.2 percent at calibration point.
4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
5. Averaging Elements in Ducts: 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Exposed.
 b. Set-Point Indication: Exposed.
 c. Thermometer: Exposed Spiral bimetal.
 e. Orientation: Vertical.

8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

D. Pressure Transmitters/Transducers:
1. Available Manufacturers:
 a. BEC Controls Corporation.
 b. General Eastern Instruments.
 c. Johnson Controls, Inc.
 d. MAMAC Systems, Inc.
 e. ROTRONIC Instrument Corp.
 f. TCS/Basys Controls.
 g. Vaisala.
2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 b. Output: 4 to 20 mA.
 c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 d. Duct Static-Pressure Range: 0- to 5-inch wg.
3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

E. Room Sensor Cover Construction: Manufacturer’s standard locking covers.
1. Set-Point Adjustment: Exposed.
2. Set-Point Indication: Exposed.
3. Thermometer: Concealed Spiral bimetal.
5. Orientation: Vertical.

F. Room sensor accessories include the following:
1. Insulating Bases: For sensors located on exterior walls.
2. Adjusting Key: As required for calibration and cover screws.

2.08 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.
1. Available Manufacturers:
 a. BEC Controls Corporation.
 b. I.T.M. Instruments Inc.
 c. Johnson Controls, Inc.
2.09 GAS DETECTION EQUIPMENT

A. Available Manufacturers:
 1. B. W. Technologies.
 2. CEA Instruments, Inc.
 3. Ebtron, Inc.
 4. Gems Sensors Inc.
 5. Greystone Energy Systems Inc.
 7. INTEC Controls, Inc.
 8. I.T.M. Instruments Inc.
 9. Johnson Controls, Inc.
 10. MSA Canada Inc.
 11. QEL/Quatrosense Environmental Limited.
 12. Sauter Controls Corporation.
 13. Sensidyne, Inc.
 14. TSI Incorporated.
 15. Vaisala.
 16. Vulcain Inc.

B. Carbon Monoxide Detectors: Single or multichannel, dual-level detectors using solid-state plug-in sensors with a 3-year minimum life; suitable over a temperature range of 32 to 104 deg F; with 2 factory-calibrated alarm levels at 50 and 100 ppm.

C. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output, for wall mounting.

2.10 THERMOSTATS

A. Available Manufacturers:
 1. Erie Controls.
 4. Johnson Controls, Inc.
 5. Sauter Controls Corporation.
 6. tekmar Control Systems, Inc.
 7. Theben AG - Lumilite Control Technology, Inc.

B. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
 1. Automatic switching from heating to cooling.
 2. Preferential rate control to minimize overshoot and deviation from set point.
 3. Set up for four separate temperatures per day.
 4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
 5. Short-cycle protection.
 6. Programming based on every day of week.
 7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
 8. Battery replacement without program loss.
9. Thermostat display features include the following:
 a. Time of day.
 b. Actual room temperature.
 c. Programmed temperature.
 d. Programmed time.
 e. Duration of timed override.
 f. Day of week.
 g. System mode indications include "heating," "off," "fan auto," and "fan on."

C. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

D. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
 1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.

E. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.

F. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

G. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

H. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

I. Heating/Cooling Valve-Top Thermostats: Proportional acting for proportional flow, with molded-rubber diaphragm, remote-bulb liquid-filled element, direct and reverse acting at minimum shutoff pressure of 25 psig, and cast housing with position indicator and adjusting knob.
2.11 ACTUATORS

A. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 1. Manufacturers:
 a. Belimo Aircontrols (USA), Inc.
 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 3. Dampers: Size for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 7. Power Requirements (Two-Position Spring Return): 24-V ac.
 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
 9. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
 10. Temperature Rating: Minus 22 to plus 122 deg F.
 11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.
 12. Run Time: 12 seconds open, 5 seconds closed.

2.12 CONTROL VALVES

A. Available Manufacturers:
 1. Belimo Aircontrols (USA), Inc.
 3. Erie Controls.
 4. Hayward Industrial Products, Inc.
 5. Johnson Controls, Inc.
 8. Parker Hannifin Corporation; Skinner Valve Division.
 10. Sauter Controls Corporation.

B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
C. Hydronic system globe valves shall have the following characteristics:
 1. NPS 2 and Smaller: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
 2. NPS 2-1/2 and Larger: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.
 3. Internal Construction: Replaceable plugs and stainless-steel or brass seats.
 a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
 b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.
 4. Sizing: 3-psig maximum pressure drop at design flow rate or the following:
 b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.
 5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
 6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.

D. Butterfly Valves: 200-psig, 150-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 2. Disc Type: Aluminum bronze.
 3. Sizing: 1-psig maximum pressure drop at design flow rate.

E. Terminal Unit Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 1. Rating: Class 125 for service at 125 psig and 250 deg F operating conditions.
 2. Sizing: 3-psig maximum pressure drop at design flow rate, to close against pump shutoff head.
 3. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.

2.13 DAMPERS

A. Available Manufacturers:
 1. Air Balance Inc.
 2. Don Park Inc.; Autodamp Div.
 3. Johnson Controls, Inc.
 4. TAMCO (T. A. Morrison & Co. Inc.).
5. United Enertech Corp.

B. Dampers: AMCA-rated, parallel or opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.14 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Division 27 Section "Communications Horizontal Cabling."

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that power supply is available to control units and operator workstation.

B. Verify that duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.02 INSTALLATION

A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.

B. Connect and configure equipment and software to achieve sequence of operation specified.

C. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.

D. Install guards on thermostats in the following locations:
 1. Entrances.
 2. Public areas.
 3. Where indicated.

E. Install automatic dampers according to Division 23 Section "Air Duct Accessories."
F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

G. Install labels and nameplates to identify control components according to Division 23 Section "Identification for HVAC Piping and Equipment."

H. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic Piping."

I. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.

J. Install electronic and fiber-optic cables according to Division 27 Section "Communications Horizontal Cabling."

3.03 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

C. Install signal and communication cable according to Division 27 Section "Communications Horizontal Cabling."
 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 2. Install exposed cable in raceway.
 3. Install concealed cable in raceway.
 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.04 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 2. Test and adjust controls and safeties.
 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
4. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
5. Test each point through its full operating range to verify that safety and operating control set points are as required.
6. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
7. Test each system for compliance with sequence of operation.
8. Test software and hardware interlocks.

B. DDC Verification:
1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
2. Check instruments for proper location and accessibility.
3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
4. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
5. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
6. Check temperature instruments and material and length of sensing elements.
7. Check control valves. Verify that they are in correct direction.
8. Check DDC system as follows:
 a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 c. Verify that spare I/O capacity has been provided.
 d. Verify that DDC controllers are protected from power supply surges.

C. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.05 ADJUSTING

A. Calibrating and Adjusting:
1. Calibrate instruments.
2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
5. **Flow:**
 a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 b. Manually operate flow switches to verify that they make or break contact.

6. **Pressure:**
 a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. **Temperature:**
 a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 b. Calibrate temperature switches to make or break contacts.

8. Stroke and adjust control valves and dampers without positioners, following the manufacturer’s recommended procedure, so that valve or damper is 100 percent open and closed.

9. Stroke and adjust control valves and dampers with positioners, following manufacturer’s recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.

10. Provide diagnostic and test instruments for calibration and adjustment of system.

11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.06 **DEMONSTRATION**

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 10 23

VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes separately enclosed, pre-assembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

B. Related Sections:
 1. Division 26 Section "Motor-Control Centers" for VFCs installed in motor-control centers.

1.03 DEFINITIONS

A. BAS: Building automation system.

B. CE: Conformite Europeene (European Compliance).

C. CPT: Control power transformer.

D. EMI: Electromagnetic interference.

E. IGBT: Insulated-gate bipolar transistor.

F. LAN: Local area network.

G. LED: Light-emitting diode.

H. MCP: Motor-circuit protector.

I. NC: Normally closed.

J. NO: Normally open.

K. OCPD: Overcurrent protective device.

L. PCC: Point of common coupling.

M. PID: Control action, proportional plus integral plus derivative.

N. PWM: Pulse-width modulated.

O. RFI: Radio-frequency interference.

P. TDD: Total demand (harmonic current) distortion.
Q. THD (V): Total harmonic voltage demand.

R. VFC: Variable-frequency motor controller.

1.04 SUBMITTALS

A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.

B. LEED Submittals:
 1. Product Data for Credit EA 5: For continuous metering equipment for energy consumption.

C. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Enclosure types and details.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of enclosed unit.
 f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 g. Specified modifications.
 2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

D. Harmonic Analysis Study and Report: Comply with IEEE 399 and NETA Acceptance Testing Specification; identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze designated operating scenarios, including recommendations for VFC input filtering to limit TDD and THD (V) at each VFC to specified levels.

E. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

F. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and MCP trip settings.
 2. Manufacturer's written instructions for setting field-adjustable overload relays.
3. Manufacturer’s written instructions for testing, adjusting, and reprogramming microprocessor control modules.
4. Manufacturer’s written instructions for setting field-adjustable timers, controls, and status and alarm points.

G. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.

H. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.05 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

D. IEEE Compliance: Fabricate and test VFC according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

1.06 DELIVERY, STORAGE, AND HANDLING

A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and install temporary electric heating, with at least 250 W per controller.

1.07 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than 14 deg F and not exceeding 104 deg F.
2. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
3. Humidity: Less than 95 percent (noncondensing).
4. Altitude: Not exceeding 6000 feet.

1.08 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:
1. Torque, speed, and horsepower requirements of the load.
2. Ratings and characteristics of supply circuit and required control sequence.
3. Ambient and environmental conditions of installation location.
1.09 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

1.10 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Indicating Lights: Two of each type and color installed.
 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

PART 2 - PRODUCTS

2.01 MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. ABB.
 5. Square D; a brand of Schneider Electric.

B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.

C. Application: Variable torque.

D. VFC Description: Variable-frequency power converter (rectifier, dc bus, and IGBT, PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

F. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

G. Unit Operating Requirements:
1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
2. Input AC Voltage Unbalance: Not exceeding 3 percent.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 96 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
7. Ambient Temperature Rating: Not less than 14 deg F and not exceeding 104 deg F.
8. Ambient Storage Temperature Rating: Not less than minus 4 deg F and not exceeding 140 deg F.
10. Altitude Rating: Not exceeding 6000 feet.
12. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
14. Speed Regulation: Plus or minus 5 percent.
15. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

J. Internal Adjustability Capabilities:
1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 0.1 to 999.9 seconds.
4. Deceleration: 0.1 to 999.9 seconds.
5. Current Limit: 30 to minimum of 150 percent of maximum rating.

K. Self-Protection and Reliability Features:
1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
4. Inverter overcurrent trips.
5. **VFC and Motor Overload/Overtemperature Protection:** Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.

6. **Critical frequency rejection,** with three selectable, adjustable deadbands.

7. **Instantaneous line-to-line and line-to-ground overcurrent trips.**

8. **Loss-of-phase protection.**

9. **Reverse-phase protection.**

10. **Short-circuit protection.**

11. **Motor overtemperature fault.**

L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

M. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

N. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

O. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

P. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

Q. Integral Input Disconnecting Means and OCPD: NEMA AB 1, molded-case switch, with power fuse block and current-limiting fuses with pad-lockable, door-mounted handle mechanism.

1. **Disconnect Rating:** Not less than 115 percent of VFC input current rating.

2. **Disconnect Rating:** Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.

3. **Auxiliary Contacts:** NO/NC, arranged to activate before switch blades open.

4. **Auxiliary contacts "a" and "b"** arranged to activate with circuit-breaker handle.

5. **NC alarm contact** that operates only when circuit breaker has tripped.

2.02 **CONTROLS AND INDICATION**

A. Status Lights: Door-mounted LED indicators displaying the following conditions:

1. **Power on.**

2. **Run.**

3. **Overvoltage.**

4. **Line fault.**

5. **Overcurrent.**

6. **External fault.**
B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:
 1. Real-time clock with current time and date.
 2. Running log of total power versus time.
 3. Total run time.
 4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 1. Output frequency (Hz).
 5. Motor torque (percent).
 6. Fault or alarming status (code).
 7. PID feedback signal (percent).
 8. DC-link voltage (V dc).
 9. Set point frequency (Hz).
 10. Motor output voltage (V ac).

E. Control Signal Interfaces:
 1. Electric Input Signal Interface:
 a. A minimum of two programmable analog inputs: 0- to 10-V dc.
 b. A minimum of six multifunction programmable digital inputs.
 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.
 3. Output Signal Interface: A minimum of one programmable analog output signal(s) (0- to 10-V dc), which can be configured for any of the following:
 a. Output frequency (Hz).
 b. Output current (load).
 c. DC-link voltage (V dc).
 d. Motor torque (percent).
e. Motor speed (rpm).

f. Set point frequency (Hz).

4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.
1. Number of Loops: One.

G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms and energy usage. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC's nonvolatile memory.
1. Network Communications Ports: Ethernet and RS-422/485.
2. Embedded BAS Protocols for Network Communications: Johnson Metasys N2; protocols accessible via the communications ports.

2.03 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

B. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic control system feedback.

C. Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.
3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

D. Bypass Contactor Configuration: Reduced-voltage (autotransformer) type.
1. NORMAL/BYPASS selector switch.
2. HAND/OFF/AUTO selector switch.
3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.

VARIABLE-FREQUENCY MOTOR CONTROLLERS
23 10 23 - 8
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 50 VA.

 a. Solid-State Overload Relays:
 1) Switch or dial selectable for motor-running overload protection.
 2) Sensors in each phase.
 3) Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 5) Analog communication module.
 b. NC isolated overload alarm contact.
 c. External overload reset push button.

2.04 OPTIONAL FEATURES

A. Firefighter's Override (Smoke Purge) Input (Stairwell/Elevator Shaft Pressurization Fans only):
 On a remote contact closure from the firefighter's control station, this password-protected input:
 1. Overrides all other local and external inputs (analog/digital, serial communication, and all keypad commands).
 2. Forces VFC to operate motor, without any other run or speed command, at a field-adjustable, preset speed.
 3. Forces VFC to transfer to Bypass Mode and operate motor at full speed.
 4. Causes display of Override Mode on the VFC display.
 5. Reset VFC to normal operation on removal of override signal automatically.

B. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

C. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.05 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.
3. Other Wet or Damp Indoor Locations: Type 4.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.06 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 b. Pilot Lights: LED types; push to test.
 c. Selector Switches: Rotary type.
 d. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

B. NC bypass contactor auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Supplemental Digital Meters:
 1. Elapsed-time meter.
 2. Kilowatt meter.

F. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, Type 3R enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

G. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.

H. Spare control-wiring terminal blocks; unwired.

2.07 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Wall-Mounting Controllers: Install VFCs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."

C. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

D. Roof-Mounting Controllers: Install VFC on roofs with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished roof surface unless otherwise indicated, and by bolting units to curbs or mounting on freestanding, lightweight, structural-steel channels bolted to curbs. Seal roof penetrations after raceways are installed.
 1. Curbs and roof penetrations are specified in Division 07 Section "Roof Accessories."
 2. Structural-steel channels are specified in Division 26 Section "Hangers and Supports for Electrical Systems."
E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

F. Install fuses in each fusible-switch VFC.

G. Install fuses in control circuits if not factory installed. Comply with requirements in Division 26 Section "Fuses."

H. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

I. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

J. Comply with NECA 1.

3.03 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each VFC with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.04 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Division 26 Section "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic control devices where applicable.
 1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.05 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
C. VFCs will be considered defective if they do not pass tests and inspections.

3.06 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.07 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study."

F. Set field-adjustable pressure switches.

3.08 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.09 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

B. Related Sections include the following:

1. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
2. Division 23 Section "Radiant Heating Hydronic Piping" for in-slab radiant tubing and accessories.

1.03 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:

1. Hot-Water Heating Piping: 125 psig at 200 deg F.
2. Chilled-water piping.
3. Dual-temperature heating and cooling water piping.
4. Condenser-Water Piping: 125 psig at 150 deg F.
5. Makeup-Water Piping: 80 psig at 150 deg F.
6. Condensate-Drain Piping: 150 deg F.
7. Safety-Valve-Inlet and -Outlet Piping.

1.04 SUBMITTALS

A. Product Data: For each type of the following:

1. Pressure-seal fittings.
2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
3. Air control devices.
5. Hydronic specialties.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Qualification Data: For Installer.
D. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

E. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.05 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

1.06 EXTRA MATERIALS

A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.

B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

2.01 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Wrought-Copper Fittings: ASME B16.22.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company of America.
 2. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
3. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.

C. Copper or Bronze Pressure-Seal Fittings:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Stadler-Viega.
 2. Housing: Copper.
 3. O-Rings and Pipe Stops: EPDM.
 4. Tools: Manufacturer’s special tools.
 5. Minimum 200-psig working-pressure rating at 250 deg F.

D. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. T-DRILL Industries Inc.

E. Wrought-Copper Unions: ASME B16.22.

2.02 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.
H. Grooved Mechanical-Joint Fittings and Couplings:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Central Sprinkler Company; a division of Tyco Fire & Building Products.
 c. National Fittings, Inc.
 d. S. P. Fittings; a division of Star Pipe Products.
 e. Victaulic Company of America.
 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

I. Steel Pressure-Seal Fittings:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Victaulic Company of America.
 2. Housing: Steel.
 3. O-Rings and Pipe Stop: EPDM.
 4. Tools: Manufacturer's special tool.
 5. Minimum 300-psig working-pressure rating at 230 deg F.

J. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.03 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.04 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.
 2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 2. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Calpico, Inc.
 b. Lochinvar Corporation.

2. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 d. Victaulic Company of America.

2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.05 VALVES

A. Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Instrumentation and Control for HVAC."

C. Bronze, Calibrated-Orifice, Balancing Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Flow Design Inc.
 d. Gerand Engineering Co.
 e. Griswold Controls.
 f. Taco.

2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
4. Plug: Resin.
5. Seat: PTFE.
6. End Connections: Threaded or socket.
8. Handle Style: Lever, with memory stop to retain set position.
10. Maximum Operating Temperature: 250 deg F.

D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Flow Design Inc.
 d. Gerand Engineering Co.
 e. Griswold Controls.
 f. Taco.
 g. Tour & Andersson; available through Victaulic Company of America.
2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
5. Disc: Glass and carbon-filled PTFE.
6. Seat: PTFE.
7. End Connections: Flanged or grooved.
9. Handle Style: Lever, with memory stop to retain set position.
11. Maximum Operating Temperature: 250 deg F.

E. Diaphragm-Operated Safety Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 d. Conbraco Industries, Inc.
 e. Spence Engineering Company, Inc.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
8. Inlet Strainer: Stainless steel, removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
F. Automatic Flow-Control Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Flow Design Inc.
 b. Griswold Controls.
2. Body: Brass or ferrous metal.
3. Piston and Spring Assembly: Corrosion resistant, tamper proof, self cleaning, and removable.
4. Combination Assemblies: Include bronze or brass-alloy ball valve.
5. Identification Tag: Marked with zone identification, valve number, and flow rate.
6. Size: Same as pipe in which installed.
7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
9. Maximum Operating Temperature: 200 deg F.

2.06 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett Domestic Pump; a division of ITT Industries.
4. Spirotherm, Inc.; a Spiro Enterprises Company
5. Taco.

B. Manual Air Vents:
1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2.
5. Discharge Connection: **NPS 1/8**.
7. Maximum Operating Temperature: 225 deg F.

C. Automatic Air Vents:
1. Body: Bronze or cast iron.
2. Internal Parts: Nonferrous.
4. Inlet Connection: NPS 1/2.
7. Maximum Operating Temperature: 240 deg F.

D. Bladder-Type Expansion Tanks:
1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. **Bladder**: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

3. **Air-Charge Fittings**: Schrader valve, stainless steel with EPDM seats.

E. In-Line Air Separators:
1. **Manufacturer**: Air separators shall be micro-bubble, reduced-velocity type manufactured by Spirotherm, Inc.
2. **Tank**: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
3. **Maximum Working Pressure**: Up to 175 psig.
4. **Maximum Operating Temperature**: Up to 300 deg F.

F. Air Purgers:
1. **Body**: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
2. **Maximum Working Pressure**: 150 psig.
3. **Maximum Operating Temperature**: 250 deg F.

2.07 CHEMICAL TREATMENT

A. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.

1. **Chemicals**: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

B. Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

2.08 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:
1. **Body**: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. **End Connections**: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. **Strainer Screen**: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
4. **CWP Rating**: 125 psig.

B. Basket Strainers:
1. **Body**: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. **End Connections**: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. **Strainer Screen**: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
4. **CWP Rating**: 125 psig.
C. T-Pattern Strainers:
1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
2. End Connections: Grooved ends.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
4. CWP Rating: 750 psig.

D. Stainless-Steel Bellow, Flexible Connectors:
2. End Connections: Threaded or flanged to match equipment connected.
4. CWP Rating: 150 psig.
5. Maximum Operating Temperature: 250 deg F.

E. Spherical, Rubber, Flexible Connectors:
2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
4. CWP Rating: 150 psig.
5. Maximum Operating Temperature: 250 deg F.

F. Expansion fittings are specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.01 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be any of the following:
1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

C. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

D. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
HYDRONIC PIPING

2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

E. Dual-temperature heating and cooling water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

F. Dual-temperature heating and cooling water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

G. Condenser-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

H. Makeup-water piping installed aboveground shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

I. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

J. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

K. Safety-Valve-Inlet and Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer’s written instructions.

3.02 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

B. Install throttling-duty valves at each branch connection to return main.

C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.03 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

U. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.04 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 2. NPS 1: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 4. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 5. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 6. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 1/2 inch.
 7. NPS 3: Maximum span, 12 feet; minimum rod size, 1/2 inch.
 8. NPS 3-1/2: Maximum span, 13 feet; minimum rod size, 1/2 inch.
 9. NPS 4: Maximum span, 14 feet; minimum rod size, 5/8 inch.
 10. NPS 5: Maximum span, 16 feet; minimum rod size, 5/8 inch.
 11. NPS 6: Maximum span, 17 feet; minimum rod size, 3/4 inch.
D. Install hangers for drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 3/8 inch.
 2. NPS 1: Maximum span, 6 feet; minimum rod size, 3/8 inch.
 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 1/2 inch.
 7. NPS 3: Maximum span, 10 feet; minimum rod size, 1/2 inch.

E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.05 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

J. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.
3.06 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.

C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

D. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.

E. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above the floor. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.

F. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.07 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.08 CHEMICAL TREATMENT

A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
 1. pH: 9.0 to 10.5.
 2. "P" Alkalinity: 100 to 500 ppm.
 3. Boron: 100 to 200 ppm.
 4. Chemical Oxygen Demand: Maximum 100 ppm. Modify this value if closed system contains glycol.
 5. Corrosion Inhibitor:
 a. Sodium Nitrate: 1000 to 1500 ppm.
b. Molybdate: 200 to 300 ppm.
c. Chromate: 200 to 300 ppm.
d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
e. Chromate Plus Molybdate: 50 to 100 ppm each.

6. Soluble Copper: Maximum 0.20 ppm.
7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum 10 ppm.
8. Total Suspended Solids: Maximum 10 ppm.
10. Free Caustic Alkalinity: Maximum 20 ppm.
11. Microbiological Limits:
 a. Total Aerobic Plate Count: Maximum 1000 organisms/ml.
 b. Total Anaerobic Plate Count: Maximum 100 organisms/ml.
 c. Nitrate Reducers: 100 organisms/ml.
 d. Sulfate Reducers: Maximum 0 organisms/ml.
 e. Iron Bacteria: Maximum 0 organisms/ml.

B. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and
detergents to remove grease and petroleum products from piping. Circulate solution for a
minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

C. Add initial chemical treatment and maintain water quality in ranges noted above for the first
year of operation.

D. Fill systems indicated to have antifreeze or glycol solutions with the following concentrations:
1. Hot-water Heating and Chilled Water Piping: Minimum 30 percent propylene glycol.

3.09 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to
test pressure. If temporary restraints are impractical, isolate expansion joints from
testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace
strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall
be capable of sealing against test pressure without damage to valve. Install blinds in
flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure,
to protect against damage by expanding liquid or other source of overpressure during
test.
B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due
to freezing. Another liquid that is safe for workers and compatible with piping may be
used.
 2. While filling system, use vents installed at high points of system to release air. Use
drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the
system's working pressure. Test pressure shall not exceed maximum pressure for any
vessel, pump, valve, or other component in system under test. Verify that stress due to
pressure at bottom of vertical runs does not exceed 90 percent of specified minimum
yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services
Piping."
 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping,
joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing
components, and repeat hydrostatic test until there are no leaks.
 6. Prepare written report of testing.

C. Perform the following before operating the system:
 1. Open manual valves fully.
 2. Inspect pumps for proper rotation.
 3. Set makeup pressure-reducing valves for required system pressure.
 4. Inspect air vents at high points of system and determine if all are installed and operating
freely (automatic type), or bleed air completely (manual type).
 5. Set temperature controls so all coils are calling for full flow.
 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers,
cooling towers, to specified values.
 7. Verify lubrication of motors and bearings.

END OF SECTION
SECTION 23 21 23

HYDRONIC PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
 2. Separately coupled, vertical, in-line centrifugal pumps.

1.03 DEFINITIONS

A. Buna-N: Nitrile rubber.
B. EPT: Ethylene propylene terpolymer.

1.04 SUBMITTALS

A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
B. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.
B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.
B. Store pumps in dry location.
C. Retain protective covers for flanges and protective coatings during storage.
D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.
E. Comply with pump manufacturer’s written rigging instructions.

1.07 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.08 EXTRA MATERIALS
A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Mechanical Seals: One mechanical seal(s) for each pump.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.02 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS
A. Manufacturers:
 1. Armstrong Pumps Inc.
 2. Bell & Gossett; Div. of ITT Industries.
 3. Taco, Inc.

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 200 deg F.

C. Pump Construction:
 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, and threaded companion-flange or union end connections.
 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
 3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
5. Packing Seal: Stuffing box, with a minimum of four rings of graphite-impregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.

D. Motor: Single speed, with permanently lubricated ball bearings, unless otherwise indicated; and rigidly mounted to pump casing. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

2.03 SEPARATELY COUPLED, VERTICAL, IN-LINE CENTRIFUGAL PUMPS

A. Available Manufacturers:
 1. Armstrong Pumps Inc.
 2. Bell & Gossett; Div. of ITT Industries.

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted vertically. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 200 deg F.

C. Pump Construction:
 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
 3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
 5. Packing Seal: Stuffing box, with a minimum of four rings of graphite-impregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.

D. Shaft Coupling: Axially split spacer coupling.

E. Motor: Single speed, with permanently lubricated ball bearings, unless otherwise indicated; rigidly mounted to pump casing with lifting eye and supporting lugs in motor enclosure. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

2.04 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory-fabricated support.

B. Triple-Duty Valve: Angle or straight pattern, 175-psig pressure rating, cast-iron body, pump discharge fitting; with drain plug and bronze-fitted shutoff, balancing, and check valve features. Brass gage ports with integral check valve, and orifice for flow measurement.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Install continuous-thread hanger rods and spring hangers of sufficient size to support pump weight. Vibration isolation devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Fabricate brackets or supports as required. Hanger and support materials are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

E. Suspend vertically mounted, in-line centrifugal pumps independent of piping. Install pumps with motor and pump shafts vertical. Use continuous-thread hanger rods and spring hangers of sufficient size to support pump weight. Vibration isolation devices are specified in Division 21 Section "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment." Hanger and support materials are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment/Hangers and Supports for HVAC Piping and Equipment."

3.03 ALIGNMENT

A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.

B. Comply with pump and coupling manufacturers' written instructions.

C. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5, "Centrifugal Pumps for Nomenclature, Definitions, Application and Operation."
D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.04 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check valve and throttling valve on discharge side of pumps.

F. Install suction diffuser and shutoff valve on suction side of pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

H. Install pressure gages on pump suction and discharge, at integral pressure-gage tapping, or install single gage with multiple input selector valve.

I. Install check valve and gate or ball valve on each condensate pump unit discharge.

J. Install electrical connections for power, controls, and devices.

K. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

L. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.05 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer’s written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
3.06 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 25 00
HVAC WATER TREATMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes the following HVAC water-treatment systems:
 1. Bypass chemical-feed equipment and controls.
 2. Biocide chemical-feed equipment and controls.
 3. Chemical treatment test equipment.
 4. HVAC water-treatment chemicals.

1.03 DEFINITIONS
A. EEPROM: Electrically erasable, programmable read-only memory.
B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
C. RO: Reverse osmosis.
D. TDS: Total dissolved solids.
E. UV: Ultraviolet.

1.04 PERFORMANCE REQUIREMENTS
A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.
B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
C. Closed hydronic systems, including condenser water, shall have the following water qualities:
 1. pH: Maintain a value within 9.0 to 10.5.
 2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
 3. Boron: Maintain a value within 100 to 200 ppm.
 4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
 5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
 6. TDS: Maintain a maximum value of 10 ppm.
9. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 d. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 e. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.

D. Open hydronic systems, including condenser water, shall have the following water qualities:
1. pH: Maintain a value within 8.0 to 9.1.
2. 'P' Alkalinity: Maintain a maximum value of 100 ppm.
3. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
4. Soluble Copper: Maintain a maximum value of 0.20 ppm.
5. TDS: Maintain a maximum value of 10 ppm.
6. Ammonia: Maintain a maximum value of 20 ppm.
7. Free "OH" Alkalinity: Maintain a maximum value of 0 ppm
8. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 10,000 organisms/ml.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 d. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 e. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.

9. Polymer Testable: Maintain a minimum value within 10 to 40.

E. Passivation for Galvanized Steel: For the first 60 days of operation.
1. pH: Maintain a value within 7 to 8.
2. Calcium Carbonate Hardness: Maintain a value within 100 to 300 ppm.
3. Calcium Carbonate Alkalinity: Maintain a value within 100 to 300 ppm.

1.05 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:
1. Bypass feeders.
2. Water meters.
3. Inhibitor injection timers.
4. pH controllers.
5. TDS controllers.
7. Chemical solution tanks.
8. Injection pumps.
9. Chemical material safety data sheets.

B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.

C. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.
D. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.

1.06 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.07 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for hot-water piping, condenser-water piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:
 1. Initial water analysis and HVAC water-treatment recommendations.
 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 3. Periodic field service and consultation.
 5. Laboratory technical analysis.
 6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ampion Corp.
 2. Anderson Chemical Co, Inc.
 4. Barclay Chemical Co.; Water Management, Inc.
 5. Boland Trane Services
 6. GE Betz.
 7. GE Osmonics.
 9. Metro Group. Inc. (The); Metropolitan Refining Div.
10. ONDEO Nalco Company.
11. Watcon, Inc.

2.02 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 1. Capacity: 5 gal.

2.03 AUTOMATIC CHEMICAL-FEED EQUIPMENT

A. Water Meter:
 1. AWWA C700, oscillating-piston, magnetic-drive, totalization meter.
 2. Body: Bronze.
 5. Registration: Gallons or cubic feet.
 7. Controls: Flow-control switch with normally open contacts; rated for maximum 10 A, 250-V ac; and that will close at adjustable increments of total flow.

B. Inhibitor Injection Timers:
 1. Microprocessor-based controller with LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Instrumentation and Control for HVAC."
 2. Programmable timers with infinite adjustment over full range, and mounted in cabinet with hand-off-auto switches and status lights.
 3. Test switch.
 5. Illuminated legend to indicate feed when pump is activated.
 6. Programmable lockout timer with indicator light. Lockout timer to deactivate the pump and activate alarm circuits.
 7. LCD makeup totalizer to measure amount of makeup and bleed-off water from two water meter inputs.

C. pH Controller:
 1. Microprocessor-based controller, 1 percent accuracy in a range from zero to 14 units. Incorporate solid-state integrated circuits and digital LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Instrumentation and Control for HVAC."
 2. Digital display and touch pad for input.
 3. Sensor probe adaptable to sample stream manifold.
 4. High, low, and normal pH indication.
 5. High or low pH alarm light, trip points field adjustable; with silence switch.
 7. Internal adjustable hysteresis or deadband.
D. TDS Controller:
 1. Microprocessor-based controller, 1 percent accuracy in a range from zero to 5000 micromhos. Incorporate solid-state integrated circuits and digital LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Instrumentation and Control for HVAC."
 2. Digital display and touch pad for input.
 3. Sensor probe adaptable to sample stream manifold.
 4. High, low, and normal conductance indication.
 5. High or low conductance alarm light, trip points field adjustable; with silence switch.
 8. Internal adjustable hysteresis or deadband.
 9. Bleed Valves:
 a. Cooling Systems: Forged-brass body, globe pattern, general-purpose solenoid with continuous-duty coil, or motorized valve.
 b. Steam Boilers: Motorized ball valve, steel body, and TFE seats and seals.

E. Biocide Feeder Timer:
 1. Microprocessor-based controller with digital LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Instrumentation and Control for HVAC."
 2. 24-hour timer with 14-day skip feature to permit activation any hour of day.
 3. Precision, solid-state, bleed-off lockout timer and clock-controlled biocide pump timer. Prebleed and bleed lockout timers.
 4. Solid-state alternator to enable use of two different formulations.
 5. 24-hour display of time of day.
 6. 14-day display of day of week.
 7. Battery backup so clock is not disturbed by power outages.

F. Chemical Solution Tanks:
 1. Chemical-resistant reservoirs fabricated from high-density opaque polyethylene with minimum 110 percent containment vessel.
 2. Molded cover with recess for mounting pump.
 3. Capacity: 30 gal.

G. Chemical Solution Injection Pumps:
 1. Self-priming, positive-displacement; rated for intended chemical with minimum 25 percent safety factor for design pressure and temperature.
 2. Adjustable flow rate.
 3. Metal and thermoplastic construction.
 5. Fully enclosed, continuous-duty, single-phase motor. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

H. Chemical Solution Tubing: Polyethylene tubing with compression fittings and joints except ASTM A 269, Type 304, stainless steel for steam boiler injection assemblies.
I. Injection Assembly:
1. Quill: Minimum NPS 1/2 with insertion length sufficient to discharge into at least 25 percent of pipe diameter.
2. Ball Valve: Two-piece, stainless steel as described in "Stainless-Steel Pipes and Fittings" Article below; and selected to fit quill.
3. Packing Gland: Mechanical seal on quill of sufficient length to allow quill removal during system operation.
4. Assembly Pressure/Temperature Rating: Minimum 600 psig at 200 deg F.

2.04 STAINLESS-STEEL PIPES AND FITTINGS

A. Stainless-Steel Tubing: Comply with ASTM A 269, Type 316.

B. Stainless-Steel Fittings: Complying with ASTM A 815/A 815M, Type 316, Grade WP-S.

C. Two-Piece, Full-Port, Stainless-Steel Ball Valves: ASTM A 351, Type 316 stainless-steel body; ASTM A 276, Type 316 stainless-steel stem and vented ball, carbon-filled TFE seats, threaded body design with adjustable stem packing, threaded ends, and 250-psig SWP and 600-psig CWP ratings.

D. Three-Piece, Full-Port, Stainless-Steel Ball Valves: ASTM A 351, Type 316 stainless-steel body; ASTM A 276, Type 316 stainless-steel stem and vented ball, threaded body design with adjustable stem packing, threaded ends, and 150-psig SWP and 600-psig CWP rating.

2.05 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 "Performance Requirements" Article.

PART 3 - EXECUTION

3.01 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.02 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer’s recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install interconnecting control wiring for chemical treatment controls and sensors.

C. Mount sensors and injectors in piping circuits.
D. Bypass Feeders: Install in closed hydronic systems, including hot-water heating and condenser water, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 2. Install water meter in makeup water supply.
 3. Install test-coupon assembly in bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
 5. Install a swing check on inlet after the isolation valve.

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 23 Section "Common Work Results for HVAC."

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23 Section "General-Duty Valves for HVAC Piping."

E. Refer to Division 22 Section "Domestic Water Piping Specialties" for backflow preventers required in makeup water connections to potable-water systems.

F. Confirm applicable electrical requirements in Division 26 Sections for connecting electrical equipment.

G. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems’ startup procedures.

4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.

5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.

7. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.

8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Remove and replace malfunctioning units and retest as specified above.

D. Sample boiler water at one-week intervals after boiler startup for a period of five weeks, and prepare test report advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article for each required characteristic. Sample boiler water at four-week intervals following the testing noted above to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section.

E. At four-week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article.

F. Comply with ASTM D 3370 and with the following standards:

3.05 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 31 13
METAL DUCTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Single-wall rectangular ducts and fittings.
2. Single-wall round and flat-oval ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.

B. Related Sections:
1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Nonmetal Ducts" for fibrous-glass ducts, thermoset fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
4. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.03 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.04 SUBMITTALS

A. Product Data: For each type of the following products:
1. Liners and adhesives.
2. Sealants and gaskets.
B. LEED Submittals:
1. Product Data for Prerequisite EQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."
2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."
3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1-2004, Section 6.4.4.2.2 - "Duct Leakage Tests."
4. Duct-Cleaning Test Report for Prerequisite EQ 1: Documentation of work performed for compliance with ASHRAE 62.1-2004, Section 7.2.4 - "Ventilation System Start-Up."
5. Product Data for Credit EQ 4.1: For adhesives and sealants, including printed statement of VOC content.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

1.05 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."
2.01 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.02 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
D. **Longitudinal Seams:** Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. **Tees and Laterals:** Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.03 SHEET METAL MATERIALS

A. **General Material Requirements:** Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. **Galvanized Sheet Steel:** Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View and to be painted: Mill phosphatized.

C. **Carbon-Steel Sheets:** Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. **Factory- or Shop-Applied Antimicrobial Coating:**
 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 5. Shop-Applied Coating Color: Black.
 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

E. **Reinforcement Shapes and Plates:** ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.04 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning.

2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA Inc.
 b. Armacell LLC.
 c. Rubatex International, LLC

2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Natural-Fiber Duct Liner: 85 percent cotton, 10 percent borate, and 5 percent polybinding fibers, treated with a microbial growth inhibitor and complying with NFPA 90A or NFPA 90B.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Bonded Logic, Inc.
 b. Reflectix Inc.
2. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature when tested according to ASTM C 518.

3. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to ASTM E 84; certified by an NRTL.

4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Insulation Pins and Washers:
1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

E. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.
2.05 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 3 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.06 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.01 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.02 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.03 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":
 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. Outdoor, Supply-Air Ducts: Seal Class A.
 3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.04 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.05 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
B. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.06 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.07 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 2-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 4. Test for leaks before applying external insulation.
 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
3.08 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer’s written instructions after removal of surface deposits and debris.

3.09 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.

B. Supply Ducts:
 1. Ducts Connected to Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.
 2. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Return Ducts:
 1. Ducts Connected to Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.
D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

F. Intermediate Reinforcement:

G. Liner:
 1. Supply Air Ducts (Round and Rectangular): Fibrous glass, Type I, 1 inch thick.
 2. Return Air Ducts (Round and Rectangular): Fibrous glass, Type I, 1 inch thick.
 3. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

H. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

3. Round and Flat Oval Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION
SECTION 23 31 16

NONMETAL DUCTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. HDPE ducts and fittings.

B. Related Sections:
 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for nonmetal ducts.
 2. Division 23 Section "Metal Ducts" for single- and double-wall, rectangular and round ducts.
 3. Division 23 Section "Air Duct Accessories" for dampers, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.03 PERFORMANCE REQUIREMENTS

A. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.04 SUBMITTALS

A. Product Data: For each type of the following products:
 1. HDPE duct materials.

B. LEED Submittals:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."
 2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
 3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2.2 - "Duct Leakage Tests."
 4. Duct-Cleaning Test Report for Prerequisite EQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 - "Ventilation System Start-Up."
 5. Product Data for Credit EQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
 6. Laboratory Test Reports for Credit EQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Structural members to which duct will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Penetrations of smoke barriers and fire-rated construction.

1.05 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

C. NFPA Compliance:
 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

PART 2 - PRODUCTS

2.01 HDPE DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. CDC Enterprises, Inc.

B. Duct and Fittings:
 2. Round Fittings: Compression, gasketed, molded of same material, pressure class, and joining method as duct.

C. Joining Materials:
 1. Duct segments and in-line fittings shall be joined by gasketed clamps.
 2. Branch fittings shall be joined to the ductwork by a co-polymer, low-VOC adhesive sealant, as manufactured or recommended by the duct manufacturer.
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 3 - EXECUTION

3.01 DUCT INSTALLATION

A. Install ducts with fewest possible joints.
B. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

C. Protect duct interiors from the moisture, construction debris and dust, and other foreign materials.

D. Install HDPE ducts and fittings to comply with SMACNA’s "Thermoplastic Duct (PVC) Construction Manual."

3.02 HANGER AND SUPPORT INSTALLATION

3.03 PAINTING

A. Paint interior of HDPE ducts that are visible through registers and grilles. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.04 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test for leaks before backfilling.
 3. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of nonmetal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.05 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.
B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch duct as recommended by duct manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply-air ducts, dampers, actuators, and turning vanes.

E. Mechanical Cleaning Methodology:
 1. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 2. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of ducts or duct accessories.
 3. Clean fibrous-glass duct with HEPA vacuuming equipment; do not permit duct to get wet. Replace fibrous-glass duct that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 4. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 5. Provide drainage and cleanup for wash-down procedures.
 6. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.
3.06 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.07 DUCT SCHEDULE

A. Underground Ducts:

1. HDPE Round Ducts and Fittings.

END OF SECTION
SECTION 23 33 00

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 2. Control dampers.
 3. Fire dampers.
 4. Combination fire and smoke dampers.
 5. Flange connectors.
 6. Turning vanes.
 7. Duct-mounted access doors.
 8. Flexible connectors.
 10. Duct accessory hardware.

B. Related Sections:
 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. LEED Submittal:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.04 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.05 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.02 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorff; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.
 2. Standard leakage rating.
 3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
2. Include center hole to suit damper operating-rod size.
3. Include elevated platform for insulated duct mounting.

2.03 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. American Warming and Ventilating; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Flexmaster U.S.A., Inc.
7. Lloyd Industries, Inc.
8. M&I Air Systems Engineering; Division of M&I Heat Transfer Products Ltd.
9. McGill AirFlow LLC.
10. METALAIRE, Inc.
11. Metal Form Manufacturing, Inc.
12. Nailor Industries Inc.
13. NCA Manufacturing, Inc.
15. Vent Products Company, Inc.
16. Young Regulator Company.

B. Low-leakage rating and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. Galvanized-steel channels, 0.064 inch thick.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 8 inches.
 2. Parallel- and opposed-blade design.
 4. 0.064 inch thick.

E. Blade Axles: 1/2-inch diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.04 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Arrow United Industries; a division of Mestek, Inc.
 3. Cesco Products; a division of Mestek, Inc.
 5. McGill AirFlow LLC.
 6. METALAIRE, Inc.
 7. Nailor Industries Inc.
 8. NCA Manufacturing, Inc.
 9. PHL, Inc.
 10. Pottorff; a division of PCI Industries, Inc.
 11. Prefco; Perfect Air Control, Inc.
 12. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
AIR DUCT ACCESSORIES

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.05 COMBINATION FIRE AND SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 4. Nailor Industries Inc.
 5. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.

G. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.

H. Smoke Detector: Integral, factory wired for single-point connection.

I. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
AIR DUCT ACCESSORIES

23 33 00 - 6

J. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.

K. Leakage: Class I.

L. Rated pressure and velocity to exceed design airflow conditions.

M. Mounting Sleeve: Factory-installed, 0.052-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

N. Master control panel for use in dynamic smoke-management systems.

O. Damper Motors: two-position action.

P. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC."
 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 7. Electrical Connection: 115 V, single phase, 60 Hz.

Q. Accessories:
 1. Auxiliary switches for signaling.
 2. Test and reset switches, remote mounted.

2.06 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.07 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible”; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.08 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. American Warming and Ventilating; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 3. Ductmate Industries, Inc.
 5. Greenheck Fan Corporation.
 6. McGill AirFlow LLC.
 7. Nailor Industries Inc.
 8. Pottorff; a division of PCI Industries, Inc.
 9. Ventfabrics, Inc.
 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

 3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.09 DUCT ACCESS PANEL ASSEMBLIES

 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Flame Gard, Inc.
 3. 3M.

 B. Labeled according to UL 1978 by an NRTL.

 C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

 D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

 E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

 F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.10 FLEXIBLE CONNECTORS

 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ventfabrics, Inc.

 B. Materials: Flame-retardant or noncombustible fabrics.
C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd..
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.11 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.

B. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
 3. Temperature Range: Minus 20 to plus 175 deg F.

C. Insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.
D. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.

E. Flexible Duct Connectors:
 1. Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size.

2.12 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install fire and smoke dampers according to UL listing.

G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. At outdoor-air intakes and mixed-air plenums.
 3. At drain pans and seals.
4. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
5. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
6. At each change in direction and at maximum 50-foot spacing.
7. Upstream and downstream from turning vanes.
8. Upstream or downstream from duct silencers.
9. Control devices requiring inspection.
10. Elsewhere as indicated.

H. Install access doors with swing against duct static pressure.

I. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

J. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

K. Install flexible connectors to connect ducts to equipment.

L. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

N. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with draw bands.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.
3.02 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 4. Inspect turning vanes for proper and secure installation.
 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION
SECTION 23 34 13

AXIAL HVAC FANS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
1. Vaneaxial fans.

1.03 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan performance ratings on actual Project site elevations above sea level.

B. Operating Limits: Classify according to AMCA 99.

1.04 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
1. Certified fan performance curves with system operating conditions indicated.
2. Certified fan sound-power ratings.
3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
4. Material thickness and finishes, including color charts.
5. Dampers, including housings, linkages, and operators.
6. Fan speed controllers.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

C. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.

D. Operation and Maintenance Data: For axial fans to include in emergency, operation, and maintenance manuals.
1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations, with protective crating and covering.

B. Disassemble and reassemble units, as required for moving to final locations, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

1.07 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.08 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

PART 2 - PRODUCTS

2.01 VANEAXIAL FANS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 2. Greenheck.
 3. Loren Cook Company.
 4. Trane.

B. Description: Fan wheel and housing, straightening vane section, factory-mounted motor with belt drive or direct drive, an inlet cone section, and accessories.
C. Housings: Steel.
 1. Inlet and Outlet Connections: Flanges.
 2. Guide Vane Section: Integral guide vanes downstream from fan wheel designed to straighten airflow.

D. Wheel Assemblies: Cast aluminum with airfoil-shaped blades mounted on cast-iron wheel plate keyed to shaft with solid-steel key.

E. Drives: Factory mounted, with final alignment and belt adjustment made after installation.
 1. Service Factor Based on Fan Motor Size: 1.2.
 2. Fan Shaft: Turned, ground, and polished steel designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
 3. Fan Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
 4. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 5. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 8. Shaft Bearings: Radial, self-aligning ball or roller bearings.
 a. Ball-Bearing Rating Life: ABMA 9, L10 of 100,000 hours.
 b. Roller-Bearing Rating Life: ABMA 11, L10 of 100,000 hours.
 c. Extend lubrication lines to outside of casing and terminate with grease fittings.

F. Accessories:
 1. Companion Flanges: Rolled flanges of same material as housing.
 2. Vertical Support: Short duct section with welded brackets bolted to fan housing, of same material as housing.
 3. Shaft Seal: Elastomeric seal and Teflon wear plate, suitable for up to 300 deg F.
 4. Motor Cover: Cover with side vents to dissipate motor heat, of same material as housing.

G. Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Enclosure Type: Totally enclosed, fan cooled.
 2. Direct-Driven Units: Encase motor in housing outside of airstream, factory wired to disconnect switch located on outside of fan housing.

H. Factory Finishes:
 1. Sheet Metal Parts: Prime coat before final assembly.
 2. Exterior Surfaces: Baked-enamel finish coat after assembly.
 3. Coatings: Powder-baked enamel:
 a. Apply to finished housings.
 b. Apply to fan wheels.

2.02 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install axial fans level and plumb.

B. Install floor-mounting units on concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

D. Install units with clearances for service and maintenance.

E. Label fans according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.02 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.03 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.

9. Disable automatic temperature-control operators, energize motor and confirm proper motor rotation and unit operation, adjust fan to indicated rpm, and measure and record motor voltage and amperage.

10. Shut unit down and reconnect automatic temperature-control operators.

11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.04 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Lubricate bearings.

END OF SECTION
SECTION 23 34 23

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Centrifugal roof ventilators.
 2. Ceiling-mounted ventilators.
 3. In-line centrifugal fans.

1.03 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

B. Operating Limits: Classify according to AMCA 99.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

C. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.
1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.06 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.07 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.01 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Acme Engineering & Manufacturing Corporation.
 2. Greenheck Fan Corporation.
 3. Loren Cook Company.
 4. PennBarry.

B. Housing: Removable, extruded-aluminum, rectangular top; square, one-piece, aluminum base with venturi inlet cone.
 1. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.
E. Accessories:
1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
2. Overall Height: 24 inches.
4. Mounting Pedestal: Galvanized steel with removable access panel.

2.02 CEILING-MOUNTED VENTILATORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Acme Engineering & Manufacturing Corporation.
2. Greenheck Fan Corporation.
3. Loren Cook Company.
4. PennBarry.

B. Housing: Steel, lined with acoustical insulation.

C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

D. Grille: Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.

E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:
1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Filter: Washable aluminum to fit between fan and grille.

2.03 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Acme Engineering & Manufacturing Corporation.
2. Greenheck Fan Corporation.
3. Loren Cook Company.
4. PennBarry.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum blades welded to aluminum hub.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 3. Companion Flanges: For inlet and outlet duct connections.
 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.04 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Enclosure Type: Totally enclosed, fan cooled.

2.05 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install power ventilators level and plumb.

B. Support units using elastomeric mounts having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Division 07 Section "Roof Accessories" for installation of roof curbs.

D. Support suspended units from structure using threaded steel rods and elastomeric hangers having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

E. Install units with clearances for service and maintenance.

F. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.02 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
3.03 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 10. Shut unit down and reconnect automatic temperature-control operators.
 11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.04 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION
SECTION 23 36 13

CHILLED BEAMS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Active Chilled Beams.

1.03 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

1.04 SUBMITTALS

A. Product Data: For each type of the following products, including rated capacities, furnished specialties, sound-power ratings, and accessories.
1. Active Chilled Beams.

B. LEED Submittal:
1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
1. Ceiling suspension assembly members.
2. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

D. Operation and Maintenance Data: For chilled beams to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.01 ACTIVE CHILLED BEAMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Dadanco-Mestek Joint Venture, LLC.
 4. Trox USA, Inc.
 5. Twa Panel Systems, Inc.

B. Casing: 0.032-inch aluminum.
 1. Air Inlet: Round stub connection for duct attachment.

C. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

D. Panel Outlet:
 1. One- or two-way throw slot outlets, as indicated on plans.
 2. Perforated-face induction air inlet.
 3. Panel face shall be painted with powder coat polyester paint in manufacturer's standard color as selected by architect.

2.02 PASSIVE CHILLED BEAMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Price Industries.
 3. Trox USA, Inc..

B. Casing: 0.032-inch aluminum.
 1. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

C. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

D. Panel Outlet (for units indicated on plans):
 1. Perforated-face panel, for units indicated on plans.
 2. Panel face shall be painted with powder coat polyester paint in manufacturer's standard color as selected by architect.
2.03 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Steel Cables: Galvanized steel complying with ASTM A 603.
C. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
D. Active Chilled Beam Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

2.04 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to ARI 880.
 1. Label each chilled beam with plan number, nominal airflow, maximum and minimum airflows.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install chilled beams according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
B. Install chilled beams level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.02 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."
B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
C. Hangers Exposed to View: Threaded rod and angle or channel supports.
D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
3.03 CONNECTIONS

A. Install piping adjacent to chilled beam to allow service and maintenance.

B. Connect ducts to active chilled beams according to Division 23 Section "Metal Ducts."

3.04 IDENTIFICATION

A. Label each chilled beam with plan number, nominal airflow, and maximum and minimum airflows. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.05 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.

D. Chilled beam will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION
SECTION 23 37 13

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
1. Rectangular and square ceiling diffusers.
2. Louver face diffusers.
3. Linear slot diffusers.
4. Adjustable bar registers and grilles.
5. Flat-faced, 1-way, wall-mounted displacement diffusers.
6. Flat-faced, 1-way, recessed displacement diffusers.
7. Round, floor displacement diffusers.

B. Related Sections:
1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.
PART 2 - PRODUCTS

2.01 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Price Industries.
 c. Titus.
 d. Tuttle & Bailey.

B. Louver Face Diffuser:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Price Industries.
 c. Titus.
 d. Tuttle & Bailey.

2.02 CEILING LINEAR SLOT OUTLETS

A. Linear Slot Diffuser:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Price Industries.
 c. Titus.
 d. Tuttle & Bailey.

2.03 REGISTERS AND GRILLES

A. Adjustable Bar Grille:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Price Industries.
 c. Titus.
 d. Tuttle & Bailey.

2.04 DISPLACEMENT DIFFUSERS

A. Flat-faced, 1-way, wall-mounted displacement diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Price Industries.
 c. Titus.
B. Flat-faced, 1-way, recessed displacement diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Price Industries.
 c. Titus.

C. Flat Round, floor displacement diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Price Industries.
 c. Titus.

2.05 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.03 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 23 37 23
HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Louvered-penthouse ventilators.

1.03 PERFORMANCE REQUIREMENTS

A. Structural Performance: Ventilators shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of ventilator components, noise or metal fatigue caused by ventilator blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 1. Wind Loads: Determine loads based on a uniform pressure of 20 lbf/sq. ft., acting inward or outward.

B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.
 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. For louvered-penthouse ventilators specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. LEED Submittal:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."

1.05 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 2. AWS D1.3, "Structural Welding Code - Sheet Steel."
1.06 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5 or T-52.

B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.

C. Galvanized-Steel Sheet: ASTM A 653/A 653M, G90 zinc coating, mill phosphatized.

D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 1. Use types and sizes to suit unit installation conditions.
 2. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.

2.02 FABRICATION, GENERAL

A. Factory fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.

D. Fabricate supports, anchorages, and accessories required for complete assembly.

E. Perform shop welding by AWS-certified procedures and personnel.

2.03 LOUVERED-PENTHOUSE VENTILATORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Aerovent.
 3. Carnes.
 5. JencoFan.
 7. PennBarry.

HVAC GRAVITY VENTILATORS
23 37 23 - 2
B. Construction: All-welded assembly with 4-inch-deep louvers, mitered corners, and aluminum sheet roof with mineral-fiber insulation and vapor barrier.

C. Frame and Blade Material and Nominal Thickness: Extruded aluminum, of thickness required to comply with structural performance requirements, but not less than 0.080 inch for frames and 0.080 inch for blades.
 1. AMCA Seal: Mark units with the AMCA Certified Ratings Seal.
 2. Exterior Corners: Prefabricated corner units with mitered and welded blades and with semirecessed Mullions at corners.

D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch-thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 2. Overall Height: 24 inches.

E. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.

F. Galvanized-Steel Sheet Finish:
 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 2. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer’s standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.

G. Accessories:
 1. Dampers:
 a. Location: Penthouse neck.
 b. Control: Motorized.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.

B. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

C. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Division 07 Section "Joint Sealants" for sealants applied during installation.

D. Label gravity ventilators according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."
E. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.

F. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

3.02 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories.

3.03 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION
SECTION 23 51 00

FLUE VENTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes the following:
 1. Listed single-wall vents.

1.03 SUBMITTALS
A. Product Data: For the following:
 1. Special gas vents.

B. Warranty: Special warranty specified in this Section.

1.04 QUALITY ASSURANCE
A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

B. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.05 WARRANTY
A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 LISTED SPECIAL GAS VENTS
A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Heat-Fab, Inc.
 2. Metal-Fab, Inc.
 3. Selkirk Inc.; Selkirk Metalbestos and Air Mate.
 4. Z-Flex; Flexmaster Canada Limited.
B. Description: Single-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.

C. Construction: ASTM A 959, Type 29-4C stainless steel.

D. Accessories: Tees, elbows, increasers, connectors, terminations, adjustable roof flashings, storm collars, support assemblies, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.
1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLICATION

A. Listed Special Gas Vent: Condensing gas appliances.

3.03 INSTALLATION OF LISTED VENTS

A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.

B. Seal between sections of positive-pressure vents according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.

D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

E. Lap joints in direction of flow.

F. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

3.04 INSTALLATION OF UNLISTED, FIELD-FABRICATED BREECHINGS AND CHIMNEYS

A. Suspend vents independent of their appliance connections.

B. Align breechings at connections, with smooth internal surface and a maximum 1/8-inch misalignment tolerance.

C. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
D. Lap joints in direction of flow.

E. Support vents from building structure with bolts, concrete inserts, steel expansion anchors, welded studs, C-clamps, or beam clamps according to manufacturer's written instructions.

3.05 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean vents internally, during and after installation, to remove dust and debris. Clean external surfaces to remove mill film.

C. Provide temporary closures at ends of vents that are not completed or connected to equipment.

END OF SECTION
SECTION 23 52 16

CONDENSING BOILERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes packaged, factory-fabricated and -assembled, gas-fired, copper fin-tube condensing boilers, trim, and accessories for generating hot water.

1.03 SUBMITTALS

A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.

B. Operation and Maintenance Data: For boilers to include in emergency, operation, and maintenance manuals.

C. Warranty: Special warranty specified in this Section.

D. Other Informational Submittals:
 1. ASME Stamp Certification and Report: Submit "A," "S," or "PP" stamp certificate of authorization, as required by authorities having jurisdiction, and document hydrostatic testing of piping external to boiler.

1.04 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.

C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers - Minimum Efficiency Requirements."

E. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.
1.05 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.06 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Copper Fin-Tube Boilers:
 a. The heat exchanger shall carry a 3-year warranty, and a 10-year warranty against thermal shock.
 b. The burner shall carry a 10-year warranty.
 c. All other parts shall have a 1-year warranty from date of substantial completion.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 1. Laars Heating Systems Company; A subsidiary of Bradford White Corporation.
 2. Lochinvar Corporation.
 3. Thermal Solutions Products, LLC.

2.02 MANUFACTURED UNITS

A. Description: Factory-fabricated, -assembled, and -tested, copper fin-tube condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Water heating service only.

B. Heat exchangers shall be constructed in accordance with Section IV of the ASME code, with straight, integral copper-finned tube construction and a gasketless header at top and bottom.

C. Heat Exchanger: Finned-copper primary and stainless-steel secondary heat exchangers. The heat exchanger design shall allow for individual access and replacement of each tube.

D. Combustion Chamber: Stainless steel, sealed.

E. Burner: Natural gas, forced draft drawing from gas premixing valve.

F. Blower: Centrifugal fan to operate during each burner firing sequence and to prepurge and postpurge the combustion chamber.
 1. Motors: Comply with requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
G. Gas Train: Combination gas valve with manual shutoff and pressure regulator.

H. Ignition: Silicone carbide hot-surface ignition that includes flame safety supervision and 100 percent main-valve shutoff.

I. Integral Circulator: Cast-iron body and stainless-steel impeller sized for minimum flow required in heat exchanger.

J. Casing:
 1. Jacket: Sheet metal, with snap-in or interlocking closures.
 2. Control Compartment Enclosures: NEMA 250, Type 1A.
 4. Insulation: Minimum 1-inch-thick, mineral-fiber insulation surrounding the heat exchanger.
 6. Mounting base to secure boiler.

2.03 TRIM

A. Include devices sized to comply with ANSI B31.9, "Building Services Piping."

B. Aquastat Controllers: Operating, firing rate, and high limit.

C. Safety Relief Valve: ASME rated.

D. Pressure and Temperature Gage: Minimum 3-1/2-inch- diameter, combination water-pressure and -temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.

E. Boiler Air Vent: Automatic.

2.04 CONTROLS

A. Refer to Division 23 Section "Instrumentation and Control for HVAC."

B. Boiler operating controls shall include the following devices and features:
 1. Control transformer.
 2. Set-Point Adjust: Set points shall be adjustable.
 3. Low-Water Cutoff and Pump Control: Cycle feedwater pump(s) for makeup water control.

C. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.
 1. High Cutoff: Manual reset stops burner if operating conditions rise above maximum boiler design temperature.
 2. Low-Water Cutoff Switch: Electronic probe shall prevent burner operation on low water. Cutoff switch shall be manual-reset type.
4. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for above conditions.

D. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor, control, and display boiler status and alarms.
 1. Hardwired Points:
 b. Control: On/off operation, hot water supply temperature set-point adjustment.

 2. A communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.

2.05 ELECTRICAL POWER

A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

B. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 1. House in NEMA 250, Type 1 enclosure.
 2. Wiring shall be numbered and color-coded to match wiring diagram.
 3. Install factory wiring outside of an enclosure in a metal raceway.
 4. Field power interface shall be to nonfused disconnect switch.
 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker.
 6. Provide each motor with overcurrent protection.

2.06 VENTING KITS

A. Kit: Complete system, ASTM A 959, Type 29-4C stainless steel, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.

B. Combustion-Air Intake: Complete system, stainless steel, pipe, vent terminal with screen, inlet air coupling, and sealant.

2.07 SOURCE QUALITY CONTROL

A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.

B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

C. Allow Owner access to source quality-control testing of boilers. Notify Architect 14 days in advance of testing.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.
 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

B. Examine mechanical spaces for suitable conditions where boilers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 BOILER INSTALLATION

A. Install boilers level on concrete base. Concrete base is specified in Division 23 Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.

B. Vibration Isolation: Elastomeric isolation pads with a minimum static deflection of 0.25 inch. Vibration isolation devices and installation requirements are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

C. Install gas-fired boilers according to NFPA 54.

D. Assemble and install boiler trim.

E. Install electrical devices furnished with boiler but not specified to be factory mounted.

F. Install control wiring to field-mounted electrical devices.

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to boiler to allow service and maintenance.

C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.

D. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service. Flexible connectors and their installation are specified in Division 23 Section "Common Work Results for HVAC,"

E. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.

F. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
G. Install piping from safety relief valves to nearest floor drain.

H. Install piping from safety valves to drip-pan elbow and to nearest floor drain.

I. Boiler Venting:
 1. Install flue venting kit and combustion-air intake.
 2. Connect full size to boiler connections.

J. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

K. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Perform installation and startup checks according to manufacturer's written instructions.
 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
 b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Remove and replace malfunctioning units and retest as specified above.

D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

E. Performance Tests:
 1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
 2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment to comply.
 3. Perform field performance tests to determine capacity and efficiency of boilers.
 a. Test for full capacity.
 b. Test for boiler efficiency at low fire 20, 40, 60, 80, 100, 80, 60, 40, and 20 percent of full capacity. Determine efficiency at each test point.
 4. Repeat tests until results comply with requirements indicated.
5. Provide analysis equipment required to determine performance.
6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.

3.05 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain boilers. Video training sessions. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 57 00
HEAT EXCHANGERS FOR HVAC

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes plate heat exchangers.

1.03 SUBMITTALS
A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Operation and Maintenance Data: For heat exchangers to include in emergency, operation, and maintenance manuals.

1.04 QUALITY ASSURANCE
A. Product Options: Drawings indicate size, profiles, performance, and dimensional requirements of heat exchangers and are based on the specific equipment indicated. Refer to Division 01 Section "Product Requirements."
B. ASME Compliance: Fabricate and label heat exchangers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.02 GASKETED PLATE HEAT EXCHANGERS
A. Available Manufacturers:
 1. Armstrong Pumps, Inc.
 2. ITT Industries; Bell & Gossett.
 3. TACO, Incorporated.
B. Configuration: Freestanding assembly consisting of frame support, top and bottom carrying and guide bars, fixed and movable end plates, tie rods, individually removable plates, and one-piece gaskets.

C. Frame:
1. Capacity to accommodate 20 percent additional plates.
2. Painted carbon steel with provisions for anchoring to support.

D. Top and Bottom Carrying and Guide Bars: Painted carbon steel, aluminum, or stainless steel.
1. Fabricate attachment of heat-exchanger carrying and guide bars with reinforcement strong enough to resist heat-exchanger movement during a seismic event when heat-exchanger carrying and guide bars are anchored to building structure.

E. End-Plate Material: Painted carbon steel.

F. Tie Rods and Nuts: Steel or stainless steel.

G. Plate Material: 0.024 inch thick before stamping; Type 304 stainless steel.

H. Gasket Material: Nitrile rubber.

I. Piping Connections:
1. Threaded port for NPS 2 and smaller. For larger sizes, furnish end-plate port with threaded studs suitable for flanged connection.
2. Line wetted surfaces with same material as plates.

J. Enclose plates in a solid aluminum removable shroud.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas for compliance with requirements for installation tolerances and for structural rigidity, strength, anchors, and other conditions affecting performance of heat exchangers.
1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 HEAT-EXCHANGER INSTALLATION

A. Concrete Bases: Anchor heat exchanger to concrete base.
1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Cast-in-place concrete materials and placement requirements are specified in Division 03.
3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Maintain manufacturer's recommended clearances for service and maintenance. Install piping connections to allow service and maintenance of heat exchangers.

C. Install shutoff valves at heat-exchanger inlet and outlet connections.

3.04 FIELD QUALITY CONTROL

A. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.05 CLEANING

A. After completing system installation, including outlet fitting and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

END OF SECTION
SECTION 23 64 23
MODULAR SCROLL WATER CHILLERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Packaged, water-cooled, electric-motor-driven, scroll water chillers.

1.03 DEFINITIONS
A. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.
B. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.
C. IPLV: Integrated part-load value. A single number part-load efficiency figure of merit calculated per the method defined by ARI 550/590 and referenced to ARI standard rating conditions.
D. kW/Ton: The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons at any given set of rating conditions.
E. NPLV: Nonstandard part-load value. A single number part-load efficiency figure of merit calculated per the method defined by ARI 550/590 and intended for operating conditions other than the ARI standard rating conditions.

1.04 PERFORMANCE REQUIREMENTS

1.05 SUBMITTALS
A. Product Data: Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
 1. Performance at ARI standard conditions and at conditions indicated.
 2. Performance at ARI standard unloading conditions.
 3. Minimum evaporator flow rate.
 4. Refrigerant capacity of water chiller.
 5. Oil capacity of water chiller.
 6. Fluid capacity of evaporator.
 7. Fluid capacity of condenser.
 9. Minimum entering condenser-water temperature.
10. Performance at varying capacity with constant design condenser-water temperature. Repeat performance at varying capacity for different condenser-water temperatures from design to minimum in 5 deg F increments.

B. LEED Submittal:
1. Product Data for Credit EA 4: Documentation required by Credit EA 4 indicating that equipment and refrigerants comply.

C. Shop Drawings: Complete set of manufacturer’s prints of water chiller assemblies, control panels, sections and elevations, and unit isolation. Include the following:
1. Assembled unit dimensions.
2. Weight and load distribution.
3. Required clearances for maintenance and operation.
4. Size and location of piping and wiring connections.
5. Wiring Diagrams: For power, signal, and control wiring.

D. Coordination Drawings: Floor plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Structural supports.
2. Piping roughing-in requirements.
3. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
4. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.

E. Startup service reports.

F. Operation and Maintenance Data: For each water chiller to include in emergency, operation, and maintenance manuals.

G. Warranty: Sample of special warranty.

1.06 QUALITY ASSURANCE

A. ARI Certification: Certify chiller according to ARI 590 certification program.

B. ARI Rating: Rate water chiller performance according to requirements in ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."

C. ASHRAE Compliance: ASHRAE 15 for safety code for mechanical refrigeration.

E. ASME Compliance: Fabricate and stamp water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code.

F. Comply with NFPA 70.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Ship water chillers from the factory fully charged with refrigerant and filled with oil.
1.08 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.09 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water chillers that fail in materials or workmanship within specified period.
 1. Compressor Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 PACKAGED MODULAR WATER-COOLED WATER CHILLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. ArctiChill
 2. Multistack, LLC.
 3. Tandem Chillers, Inc..

B. Description: Factory-assembled and run-tested water chiller complete with compressor(s), compressor motors and motor controllers, evaporator, condenser where indicated, electrical power, controls, and indicated accessories.

C. Compressors:
 1. Description: Positive-displacement direct drive with hermetically sealed casing.
 2. Each compressor provided with suction and discharge service valves, crankcase oil heater, and suction strainer.
 3. Operating Speed: Nominal 3600 rpm for 60-Hz applications.
 5. Oil Lubrication System: Automatic pump with strainer, sight glass, filling connection, filter with magnetic plug, and initial oil charge.
 7. Sound-reduction package shall consist of acoustic enclosures around the compressors that are designed to reduce sound level without affecting performance.

D. Compressor Motors:
 1. Hermetically sealed and cooled by refrigerant suction gas.
 2. High-torque, two-pole induction type with inherent thermal-overload protection on each phase.

E. Compressor Motor Controllers:
 1. Across the Line: NEMA ICS 2, Class A, full voltage, nonreversing.
F. Refrigeration:
1. Refrigerant: R-134a. Classified as Safety Group A1 according to ASHRAE 34.
2. Refrigerant Compatibility: Parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.
3. Refrigerant Circuit: Each circuit shall include a thermal-expansion valve, refrigerant charging connections, a hot-gas muffler, compressor suction and discharge shutoff valves, a liquid-line shutoff valve, a replaceable-core filter-dryer, a sight glass with moisture indicator, a liquid-line solenoid valve, and an insulated suction line.
4. Refrigerant Isolation: Factory install positive shutoff isolation valves in the compressor discharge line and the refrigerant liquid-line to allow the isolation and storage of the refrigerant charge in the chiller condenser.

G. Evaporator:
1. Brazed Plate:
 a. Direct-expansion, single-pass, brazed-plate design.
 b. Type 316 stainless-steel construction.
 c. Code Compliance: Tested and stamped according to ASME Boiler and Pressure Vessel Code.
 d. Fluid Nozzles: Terminate with mechanical-coupling end connections for connection to field piping.

H. Condenser:
1. Brazed Plate:
 a. Direct-expansion, single-pass, brazed-plate design.
 b. Type 316 stainless-steel construction.
 c. Code Compliance: Tested and stamped according to ASME Boiler and Pressure Vessel Code.
 d. Fluid Nozzles: Terminate with mechanical-coupling end connections for connection to field piping.

I. Electrical Power:
1. Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to water chiller.
2. House in a unit-mounted, NEMA 250, Type 1 enclosure with hinged access door with lock and key or padlock and key.
3. Wiring shall be numbered and color-coded to match wiring diagram.
4. Install factory wiring outside of an enclosure in a raceway.
5. Field power interface shall be to NEMA KS 1, heavy-duty, nonfused disconnect switch.
6. Provide branch power circuit to each motor and to controls with one of the following disconnecting means:
 a. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.
 b. NEMA KS 1, heavy-duty, nonfusible switch.
 c. NEMA AB 1, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
7. Provide each motor with overcurrent protection.
8. Overload relay sized according to UL 1995, or an integral component of water chiller control microprocessor.
10. Controls Transformer: Unit-mounted transformer with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.
11. Control Relays: Auxiliary and adjustable time-delay relays.
12. Indicate the following for water chiller electrical power supply:
 a. Current, phase to phase, for all three phases.
 b. Voltage, phase to phase and phase to neutral for all three phases.
 c. Three-phase real power (kilowatts).
 d. Three-phase reactive power (kilovolt amperes reactive).
 e. Power factor.
 f. Running log of total power versus time (kilowatt hours).
 g. Fault log, with time and date of each.

J. Controls:
1. Stand-alone, microprocessor based.
2. Enclosure: Share enclosure with electrical power devices or provide a separate enclosure of matching construction.
3. Operator Interface: Keypad or pressure-sensitive touch screen. Multiple-character, backlit, liquid-crystal display or light-emitting diodes. Display the following:
 a. Date and time.
 b. Operating or alarm status.
 c. Operating hours.
 d. Outside-air temperature if required for chilled-water reset.
 e. Temperature and pressure of operating set points.
 f. Entering and leaving temperatures of chilled water.
 g. Entering and leaving temperatures of condenser water.
 h. Refrigerant pressures in evaporator and condenser.
 i. Saturation temperature in evaporator and condenser.
 j. No cooling load condition.
 k. Elapsed time meter (compressor run status).
 l. Pump status.
 m. Antirecycling timer status.
 n. Percent of maximum motor amperage.
 o. Current-limit set point.
 p. Number of compressor starts.

4. Control Functions:
 a. Manual or automatic startup and shutdown time schedule.
 b. Entering and leaving chilled-water temperatures, control set points, and motor load limit. Chilled-water leaving temperature shall be reset based on space temperature.
 c. Current limit and demand limit.
 d. Condenser-water temperature.
 e. External water chiller emergency stop.
 f. Antirecycling timer.
 g. Automatic lead-lag switching.
5. Manual-Reset Safety Controls: The following conditions shall shut down water chiller and require manual reset:
 a. Low evaporator pressure or high condenser pressure.
 b. Low chilled-water temperature.
 c. Refrigerant high pressure.
 d. High or low oil pressure.
 e. High oil temperature.
 f. Loss of chilled-water flow.
 g. Loss of condenser-water flow.
 h. Control device failure.

6. Building Automation System Interface: Factory-installed hardware and software to enable building automation system to monitor, control, and display water chiller status and alarms.
 a. Hardwired Points:
 1) Monitoring: On/off status, common trouble alarm electrical power demand (kilowatts).
 2) Control: On/off operation, chilled-water discharge temperature set-point adjustment, and electrical power demand limit.
 b. ASHRAE 135 (BACnet) communication interface with building automation system shall enable building automation system operator to remotely control and monitor the water chiller from an operator workstation. Control features and monitoring points displayed locally at water chiller control panel shall be available through building automation system.

K. Insulation:
 1. Material: Closed-cell, flexible elastomeric, thermal insulation complying with ASTM C 534, Type I, for tubular materials and Type II, for sheet materials.
 2. Thickness: 3/4 inch.
 3. Factory-applied insulation over cold surfaces of water chiller components.
 a. Adhesive: As recommended by insulation manufacturer and applied to 100 percent of insulation contact surface. Seal seams and joints.
 4. Apply protective coating to exposed surfaces of insulation.

L. Accessories:
 1. Factory-furnished, chilled- and condenser-water flow switches for field installation.
 2. Individual compressor suction and discharge pressure gages with shutoff valves for each refrigeration circuit.
 3. Factory-furnished neoprene isolators for field installation.

2.02 SOURCE QUALITY CONTROL

A. Perform functional test of water chillers before shipping.

B. Factory performance test water chillers, before shipping, according to ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."
 1. Allow Owner access to place where water chillers are being tested. Notify Architect 14 days in advance of testing.
C. Factory test and inspect evaporator and water-cooled condenser according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Stamp with ASME label.

D. For water chillers located indoors, rate sound power level according to ARI 575 procedure.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Before water chiller installation, examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting water chiller performance, maintenance, and operations.
 1. Water chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 WATER CHILLER INSTALLATION

A. Install water chillers on support structure indicated.

B. Equipment Mounting: Install water chiller on concrete bases using elastomeric pads. Comply with requirements in Division 03 Section "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Maintain manufacturer's recommended clearances for service and maintenance.

D. Charge water chiller with refrigerant if not factory charged and fill with oil if not factory installed.

E. Install separate devices furnished by manufacturer and not factory installed.

3.03 CONNECTIONS

A. Comply with requirements in Division 23 Section "Hydronic Piping" Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements in Division 23 Section "Refrigerant Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
C. Install piping adjacent to chiller to allow service and maintenance.

D. Evaporator Fluid Connections: Connect to evaporator inlet with shutoff valve, flexible connector, thermometer, and plugged tee with pressure gage. Connect to evaporator outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with pressure gage, and drain connection with valve. Make connections to water chiller with a union, flange, or mechanical coupling.

E. Condenser Fluid Connections: Connect to condenser inlet with shutoff valve, flexible connector, thermometer, and plugged tee with pressure gage. Connect to condenser outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with pressure gage, and drain connection with valve. Make connections to water chiller with a union, flange, or mechanical coupling.

F. Refrigerant Pressure Relief Valve Connections: For water chillers installed indoors, extend vent piping to the outside without valves or restrictions.

G. Connect each drain connection with a union and drain pipe and extend pipe, full size of connection, to floor drain. Provide a shutoff valve at each connection if required.

3.04 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 1. Verify that refrigerant charge is sufficient and water chiller has been leak tested.
 2. Verify that pumps are installed and functional.
 3. Verify that thermometers and gages are installed.
 4. Operate water chiller for run-in period.
 5. Check bearing lubrication and oil levels.
 6. Verify that refrigerant pressure relief device for chillers installed indoors is vented outside.
 7. Verify proper motor rotation.
 8. Verify static deflection of vibration isolators, including deflection during water chiller startup and shutdown.
 11. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.

C. Prepare a written startup report that records results of tests and inspections.

3.05 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain water chillers.

END OF SECTION

MODULAR SCROLL WATER CHILLERS
23 64 23 - 8
SECTION 23 73 13
MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Constant-air-volume, single-zone air-handling units.
 2. Variable-air-volume, single-zone air-handling units.

B. Related Sections:
 1. Division 23 Section "Variable-Frequency Motor Controllers" for variable-speed drives.

1.03 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design vibration isolation details, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Casing panels shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.

1.04 SUBMITTALS

A. Product Data: For each air-handling unit indicated.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Dampers, including housings, linkages, and operators.
 6. Filters with performance characteristics.

B. LEED Submittal:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."
C. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 2. Support location, type, and weight.
 3. Field measurements.

D. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

F. Comply with NFPA 70.

1.06 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

1.07 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set for each air-handling unit.
 2. Gaskets: One set for each access door.
 3. Fan Belts: One set for each air-handling unit fan.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AnnexAir, Inc.
 2. Dunham-Bush, Inc.
 3. Engineered Air.

2.02 UNIT CASINGS

A. General Fabrication Requirements for Casings:
 1. Double-wall construction.
 2. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 3. Casing Joints: Sheet metal screws or pop rivets.
 4. Sealing: Seal all joints with water-resistant sealant.
 5. Factory Finish for Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.

B. Casing Insulation and Adhesive:
 1. Materials: ASTM C 1071, Type I.
 2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the cooling-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service-air velocity.
 3. Location and Application: Encased between outside and inside casing.

C. Inspection and Access Panels and Access Doors:
 1. Panel and Door Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.
 2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
3. **Access Doors:**
 a. **Hinges:** A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. **Gasket:** Neoprene, applied around entire perimeters of panel frames.
 c. **Size:** At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.

4. **Locations and Applications:**
 a. **Fan Section:** Doors.
 b. **Access Section:** Doors.
 c. **Coil Section:** Inspection and access panel.
 d. **Damper Section:** Doors.
 e. **Filter Section:** Doors large enough to allow periodic removal and installation of filters.
 f. **Mixing Section:** Doors.

5. **Service Light:** 100-W vaporproof fixture with switched junction box located outside adjacent to door.
 a. **Locations:** Each section accessed with door.

D. Condensate Drain Pans:
1. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 a. **Length:** Extend drain pan downstream from leaving face to comply with ASHRAE 62.1-2004.
 b. **Depth:** A minimum of 2 inches deep.

2. Formed sections.
3. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
4. **Drain Connection:** Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 a. **Minimum Connection Size:** NPS 1.

5. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

E. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

2.03 **FAN, DRIVE, AND MOTOR SECTION**

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
1. **Shafts:** Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. **Turned, ground, and polished hot-rolled steel with keyway:** Ship with a protective coating of lubricating oil.
b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 2. Horizontal-Flanged, Split Housing: Bolted construction.
 3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
 4. Flexible Connector: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized-steel sheet or 0.032-inch- thick aluminum sheets; select metal compatible with casing.
 1) Fabric Minimum Weight: 26 oz./sq. yd..
 2) Fabric Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3) Fabric Service Temperature: Minus 40 to plus 200 deg F.

C. Plenum Fan Housings: Steel frame and panel; fabricated without fan scroll and volute housing.

D. Backward-Inclined, Centrifugal Fan Wheels: Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades welded or riveted to flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

E. Airfoil, Centrifugal Fan Wheels: Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

F. Fan Shaft Bearings:
 1. Prelubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with a rated life of 50,000 hours according to ABMA 9.

G. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 2. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
 3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.
 4. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.1046-inch- thick, 3/4-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.

H. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.
I. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Enclosure Type: Totally enclosed, fan cooled.
 2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 4. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 5. Mount unit-mounted disconnect switches on exterior of unit.

2.04 COIL SECTION

A. General Requirements for Coil Section:
 1. Comply with ARI 410.
 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.

2.05 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:
 1. Comply with NFPA 90A.
 2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 3. Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

B. Extended-Surface, Disposable Panel Pre-Filters:
 1. Factory-fabricated, dry, extended-surface type.
 2. Thickness: 2 inches.
 3. Initial Resistance: 0.31 inches wg.
 4. Recommended Final Resistance: 1.0 inches wg.
 6. Media: Fibrous material formed into deep-V-shaped pleats and held by self-supporting wire grid.
 8. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks.

C. Extended-Surface, Nonsupported-Media Filters:
 1. Factory-fabricated, dry, extended-surface, self-supporting type.
 2. Initial Resistance: 0.31 inches wg.
 3. Recommended Final Resistance: 1.5 inches wg.
 5. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions.
7. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

D. Filter Gage:
1. 2-inch-diameter, diaphragm-actuated dial in metal case.
2. Vent valves.
3. Black figures on white background.
4. Front recalibration adjustment.
5. 3 percent of full-scale accuracy.
6. Range: 0- to 2.0-inch wg.
7. Accessories: Static-pressure tips with integral compression fittings, 1/4-inch aluminum tubing, and 2- or 3-way vent valves.

2.06 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Damper Operators: Comply with requirements in Division 23 Section "Instrumentation and Control for HVAC."

C. Electronic Damper Operators:
1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
6. Size dampers for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
11. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
12. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
13. Temperature Rating: Minus 22 to plus 122 deg F.

D. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement with steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 5 cfm/sq. ft. at 1-inch wg and 9 cfm/sq. ft. at 4-inch wg.

2.07 AIR-TO-AIR ENERGY RECOVERY

A. Sensible-Only Heat Wheels:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Airxchange.
 d. Loren Cook Company.
 e. Munters.
 f. SEMCO Incorporated.
 g. Trane; American Standard Inc.
2. Casing:
 a. Steel, with manufacturer’s standard paint coating.
 b. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.
 c. Casing seals on periphery of rotor, on duct divider, and on purge section.
 d. Support rotor on grease-lubricated ball bearings with extended grease fittings. Mount horizontal wheels on tapered roller bearing.
5. Controls:
 a. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
2.08 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."

C. Water Coils: Factory tested to 300 psig according to ARI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Equipment Mounting: Install air-handling units on concrete bases without vibration isolation devices. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 3. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.03 CONNECTIONS

A. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

F. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories."

3.04 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.

2. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

D. Prepare test and inspection reports.

3.05 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.

2. Verify that shipping, blocking, and bracing are removed.
3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.

4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.

5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.

6. Verify that outdoor- and return-air dampers open and close.

7. Comb coil fins for parallel orientation.

8. Install new, clean filters.

9. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:

1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.

2. Measure and record motor electrical values for voltage and amperage.

3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.06 ADJUSTING

A. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.07 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.08 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION
SECTION 23 81 26

SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.03 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. LEED Submittals:
 1. Product Data for Credit EA 4: For refrigerants, documentation including printed statement that refrigerants are free of HCFCs.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

D. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

E. Warranty: Sample of special warranty.

1.04 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."

1.05 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.06 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

 1. Warranty Period:
 a. For Compressor: Five year(s) from date of Substantial Completion.
 b. For Parts: One year(s) from date of Substantial Completion.
 c. For Labor: One year(s) from date of Substantial Completion.

1.07 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Filters: One set(s) for each air-handling unit.
 2. Gaskets: One set(s) for each access door.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
 3. SANYO North America Corporation; SANYO Fisher Company.

2.02 INDOOR UNITS 5 TONS OR LESS

A. Wall-Mounted, Evaporator-Fan Components:

 1. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.
 2. Fan: Direct drive, centrifugal.
3. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 f. Mount unit-mounted disconnect switches on exterior of unit.

5. Condensate Drain Pans:
 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1-2004.
 2) Depth: A minimum of 1 inch deep.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 1) Minimum Connection Size: 3/4".
 d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

2.03 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:
 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
 4. Fan: Aluminum-propeller type, directly connected to motor.
 5. Motor: Permanently lubricated, with integral thermal-overload protection.
6. Low Ambient Kit: Permits operation down to 45 deg F.

2.04 ACCESSORIES

A. Control equipment and sequence of operation are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls."

B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.

C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.

D. Automatic-reset timer to prevent rapid cycling of compressor.

E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

F. Drain Hose: For condensate.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install roof-mounted, compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.02 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
3.03 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.04 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.05 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain units.

END OF SECTION
SECTION 23 81 46
WATER-SOURCE UNITARY HEAT PUMPS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following types of water-source heat pumps:
 1. Concealed horizontal or vertical units, 6 tons and smaller.
 2. Rooftop units.

1.03 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each model.

B. LEED Submittals:
 1. Product Data for Credit EA 4: Documentation required by Credit EA 4 indicating that equipment and refrigerants comply.
 2. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."

C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

D. Product Certificates: For each type of water-source heat pump, signed by product manufacturer.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For water-source heat pumps to include in emergency, operation, and maintenance manuals.

G. Warranty: Special warranty specified in this Section.

1.04 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of water-source heat pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. ASHRAE Compliance:
 1. ASHRAE 15.
 2. Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

E. Comply with NFPA 70.

F. Comply with safety requirements in UL 484 for assembly of free-delivery water-source heat pumps.

G. Comply with safety requirements in UL 1995 for duct-system connections.

1.05 COORDINATION

A. Coordinate layout and installation of water-source heat pumps and suspension components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system components, and partition assemblies.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.06 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of water-source heat pumps that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, refrigeration components.
 2. Warranty Period: Five years from date of Substantial Completion.

1.07 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. One set of filters for each unit.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
2.02 CONCEALED WATER-SOURCE HEAT PUMPS, 6 TONS AND SMALLER

A. Available Manufacturers:
 1. ClimateMaster, Inc.
 2. FHP Manufacturing Inc.
 3. Mammoth Inc.
 5. Trane.

B. Description: Packaged water-source heat pump with temperature controls; factory assembled, tested, and rated according to ARI-ISO-13256-1.

C. Cabinet and Chassis: Galvanized-steel casing with the following features:
 1. Access panel for access and maintenance of internal components.
 2. Knockouts for electrical and piping connections.
 3. Flanged duct connections.
 4. Cabinet Insulation: Glass-fiber liner, minimum 1/2 inch thick, complying with UL 181.
 7. Sound Attenuation Package:
 a. Minimum 0.598-inch-thick compressor enclosure and front panel. Minimum 0.0937-inch-thick foam gasket around the compressor and perimeter of end panel.
 b. Sound attenuating blanket over compressor.
 c. Hot-gas muffler.

D. Fan: Direct driven, centrifugal, with multispeed motor resiliently mounted in fan inlet.
 1. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 2. Motor: Multispeed, permanently lubricated, permanent split capacitor or ECM motor.

E. Water Circuit:
 1. Refrigerant-to-Water Heat Exchangers:
 a. Coaxial heat exchangers with copper water tube with enhanced heat-transfer surfaces inside a steel shell; both shell and tube leak tested to 450 psig on refrigerant side and 400 psig on water side. Factory mount heat exchanger in unit on resilient rubber vibration isolators.
 b. Stainless-steel, brazed-plate heat exchanger leak tested to 450 psig for refrigerant side and 400 psig for water side. Factory mount heat exchanger in unit on resilient rubber vibration isolators.
 2. Water-Side Economizer: Copper tube and aluminum fin coil with three-way valve and entering-water temperature sensor and controller. Valve diverts water to water-side economizer coil ahead of refrigerant-to-water heat exchanger when entering-water temperature falls to 55 deg F.
3. Water Regulating Valves: Limit water flow through refrigerant-to-water heat exchanger, and control head pressure on compressor during cooling and heating. Valves shall close when heat-pump compressor is not running.

4. Motorized Water Valve: Stop water flow through the unit when compressor is off.

F. Refrigerant-to-Air Coils: Copper tubes with aluminum fins, leak tested to 450 psig.

G. Refrigerant Circuit Components:
2. Filter-Dryer: Factory installed to clean and dehydrate the refrigerant circuit.
3. Charging Connections: Service fittings on suction and liquid for charging and testing.
4. Reversing Valve: Pilot-operated sliding-type valve designed to be fail-safe in heating position with replaceable magnetic coil.
5. Compressor: Hermetic rotary or scroll compressor installed on vibration isolators and housed in an acoustically treated enclosure with factory-installed safeties as follows:
 a. Antirecycle timer.
 b. High-pressure cutout.
 c. Low-pressure cutout or loss of charge switch.
 d. Internal thermal-overload protection.
 e. Freezeastat to stop compressor if water-loop temperature in refrigerant-to-water heat exchanger falls below 35 deg F.
 f. Condensate overflow switch to stop compressor with high condensate level in condensate drain pan.

7. Pipe Insulation: Refrigerant minimum 3/8-inch- thick, flexible elastomeric insulation on piping exposed to airflow through the unit. Maximum 25/50 flame-spread/smoke-development indexes according to ASTM E 84.
9. Refrigerant Metering Device: Thermal expansion valve to allow specified operation with entering-water temperatures from 25 to 125 deg F.

H. Filters: Disposable, pleated type, 1 inch thick and with a minimum of 90 percent arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value of 8 according to ASHRAE 52.2.

I. Control equipment and sequence of operation are specified in Division 23 Sections "Instrumentation and Controls for HVAC" and "Sequence of Operations for HVAC Controls."

J. Controls:
1. Basic Unit Controls:
 a. Low- and high-voltage protection.
 b. Overcurrent protection for compressor and fan motor.
 c. Random time delay, three to ten seconds, start on power up.
 d. Time delay override for servicing.
 e. Control voltage transformer.
 f. Humidity control with dehumidification and reheat.
2. BAS interface requirements as further described in Division 23 Sections "Instrumentation and Controls for HVAC" and "Sequence of Operations for HVAC Controls."
 a. Interface relay for scheduled operation.
 b. Interface relay to provide indication of fault at central workstation.
 c. Provide BAC-net or Lonworks interface for central BAS workstation for the following functions:
 1) Set-point adjustment for set points identified in this Section.
 2) Start/stop and operating status of heat-pump unit.
 3) Data inquiry to include supply air, room air temperature and humidity, and entering-water temperature.
 4) Occupied and unoccupied schedules.

K. Electrical Connection: Single electrical connection with fused disconnect, if required by manufacturer.

2.03 ROOFTOP WATER-SOURCE HEAT PUMPS

A. Available Manufacturers:
 1. Addison Products Company.
 2. Carrier Corporation.
 3. ClimateMaster, Inc.
 4. FHP Manufacturing Inc.
 5. Mammoth Inc.
 7. Trane.

B. Description: Packaged water-source heat pump with temperature controls; factory assembled, tested, and rated according to ARI-ISO-13256-1.

C. Cabinet and Chassis: Galvanized-steel casing with the following features:
 1. Water- and air-tight access panels for access and maintenance of internal components.
 2. Knockouts for electrical and piping connections.
 3. Flanged duct connections.
 4. Cabinet Insulation: Glass-fiber liner, 1 inch thick, complying with UL 181.

D. Indoor Fan: Forward curved centrifugal, with direct-drive, multispeed motor resiliently mounted in fan inlet or belt-drive, single-speed motor with adjustable motor sheave installed on an adjustable fan base resiliently mounted in cabinet.
 1. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
2. Direct-Drive Fan Motor: Multispeed, permanently lubricated, permanent split capacitor motor.

E. Water Circuit:
1. Refrigerant-to-Water Heat Exchanger:
 a. Coaxial heat exchanger with copper water tube with enhanced heat-transfer surfaces inside a steel shell; both shell and tube leak tested to 450 psig on refrigerant side and 400 psig on water side. Factory mount heat exchanger in unit on resilient rubber vibration isolators.
 b. Stainless-steel brazed plate heat exchanger leak tested to 450 psig on refrigerant side and 400 psig on water side. Factory mount heat exchanger in unit on resilient rubber vibration isolators.
2. Water Regulating Valves: Limit water flow through refrigerant-to-water heat exchanger, and control head pressure on compressor during cooling and heating. Valves shall close when heat-pump compressor is not running.
3. Motorized Water Valve: Stop water flow through the unit when compressor is off.

F. Refrigerant-to-Air Coils: Copper tubes with aluminum fins, leak tested to 450 psig.

G. Refrigerant Circuit Components:
1. Sealed Refrigerant Circuit:
 a. Charge with R-407C or R-410A refrigerant.
2. Filter-Dryer: Factory installed to clean and dehydrate each refrigerant circuit.
3. Charging Connections: Service fittings on suction and liquid for charging and testing on each circuit.
4. Reversing Valve: Pilot-operated sliding-type valve designed to be fail-safe in heating position with replaceable magnetic coil.
5. Compressor: Hermetic scroll compressor installed on vibration isolators housed in an acoustically treated enclosure with factory-installed safeties as follows:
 a. Antirecycle timer.
 b. High-pressure cutout.
 c. Low-pressure cutout or loss of charge switch.
 d. Internal thermal-overload protection.
 e. Freezeestat to stop compressor if water-loop temperature in refrigerant-to-water heat exchanger falls below 25 deg F.
 f. Condensate overflow switch to stop compressor with high condensate level in condensate drain pan.
7. Pipe Insulation: Refrigerant minimum 3/8-inch- thick, flexible elastomeric insulation on piping exposed to airflow through the unit. Maximum 25/50 flame-spread/smoke-development indexes per ASTM E 84.
9. Refrigerant Metering Device: Thermal expansion valve to allow specified operation with entering-water temperatures from 25 to 125 deg F.
H. Hot-Gas Reheat: Reheat valve diverts refrigerant hot gas to reheat coil when remote humidistat calls for dehumidification.

I. Hot-Gas Bypass: Include constant pressure expansion valve, solenoid valve, and controls to maintain continuous refrigeration system operation at 10 percent of full load on lead compressor.

J. Outdoor-Air Damper: Linked damper blades with manual slide and hood.

K. Filters: Disposable, pleated type, 2 inches thick and with a minimum of 90 percent arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value of 13 according to ASHRAE 52.2.

L. Roof Curb: Steel, with corrosion-protection coating, gasketing, and factory-installed wood nailer; complying with NRCA standards; minimum height of 24 inches.

M. Control equipment and sequence of operation are specified in Division 23 Sections "Instrumentation and Controls for HVAC" and "Sequence of Operations for HVAC Controls."

N. Electrical Connection: Single electrical connection with fused disconnect.

2.04 HOSE KITS

A. General: Hose kits shall be designed for minimum 400 psig working pressure, and operating temperatures from 33 to 211 deg F. Tag hose kits to equipment designations.

B. Hose: Length 24 inches. Minimum diameter, equal to water-source heat-pump connection size.

C. Isolation Valves: Two-piece bronze-body ball valves with stainless-steel ball and stem and galvanized-steel lever handle. Provide valve for supply and return. If balancing device is combination shutoff type with memory stop, the isolation valve may be omitted on the return.

D. Strainer: Y-type with blowdown valve in supply connection.

E. Balancing Device: Mount in return connection. Include meter ports to allow flow measurement with differential pressure gage.
 1. Automatic balancing valve, factory set to operate within 10 percent of design flow rate over a 40:1 differential pressure range of 2 to 80 psig.

2.05 PUMP MODULE

A. Minimum 1/6-hp, 200-V, single-phase pump rated to move at least 16 gpm at 20-feet wg head pressure.
 1. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

B. Include pump module hose kit with thread to barb fittings, hose, and hose clamps.
C. Three-way brass shut-off/flushing/purging valve.

D. Include controls to operate pump as required to maintain room temperature and ventilation set points.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of water-source heat pumps.

B. Examine roughing-in for piping and electric installations for water-source heat pumps to verify actual locations of piping connections and electrical conduit before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Suspend water-source heat pumps from structure with threaded steel rods and minimum 0.25-inch static deflection rubber-in-shear vibration isolators. Vibration isolators are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

3.03 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 1. Connect supply and return hydronic piping to heat pump with hose kits.
 2. Connect heat-pump condensate drain pan to indirect waste connection with condensate trap of adequate depth to seal against the pressure of fan. Install cleanouts in piping at changes of direction.

B. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts. Specific connection requirements are as follows:
 1. Connect supply and return ducts to water-source heat pumps with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."

C. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

D. Install piping adjacent to machine to allow service and maintenance.

E. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
1. After installing water-source heat pumps and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace malfunctioning units and retest as specified above.

3.05 STARTUP SERVICE

A. Complete installation and startup checks according to manufacturer’s written instructions and do the following:
1. Inspect for visible damage to unit casing.
2. Inspect for visible damage to compressor, coils, and fans.
3. Inspect internal insulation.
4. Verify that labels are clearly visible.
5. Verify that clearances have been provided for servicing.
6. Verify that controls are connected and operable.
7. Verify that filters are installed.
8. Adjust vibration isolators.
9. Verify bearing lubrication on fan.
10. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
11. Start unit according to manufacturer’s written instructions.
12. Complete startup sheets and attach copy with Contractor’s startup report.
13. Inspect and record performance of interlocks and protective devices; verify sequences.
14. Operate unit for an initial period as recommended or required by manufacturer.
15. Verify thermostat and humidistat calibration.
16. Inspect controls for correct sequencing of heating, refrigeration/dehumidification, reheat and normal and emergency shutdown.
17. Start refrigeration system and measure and record the following:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
18. Measure and record supply-air volume. Plot fan volumes on fan curve.
3.06 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

3.07 CLEANING

A. Replace filters used during construction prior to air balance or substantial completion.

B. After completing installation of exposed, factory-finished water-source heat pumps, inspect exposed finishes and repair damaged finishes.

3.08 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water-source heat pumps. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 82 33
CONVECTORS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. This Section includes the following:
 1. Flat-pipe Steel Radiators.

1.03 SUBMITTALS
 A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and
 accessories for each type of product indicated.
 B. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following
 items are shown and coordinated with each other, based on input from installers of the items
 involved:
 1. Structural members, including wall construction, to which convection units will be
 attached.
 2. Method of attaching convection units to building structure.
 3. Penetrations of fire-rated wall and floor assemblies.
 C. Color Samples for Initial Selection: For units with factory-applied color finishes.
 D. Color Samples for Verification: For each type of exposed finish required.
 E. Operation and Maintenance Data: For convection heating units to include in emergency,
 operation, and maintenance manuals.

PART 2 - PRODUCTS

2.01 FLAT-PIPE STEEL RADIATORS
 A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering
 products that may be incorporated into the Work include, but are not limited to, the following:
 1. Embassy Industries, Inc.
 2. Panel Radiator, Inc., a div. of Hydro-Air Components.
 3. Runtal North America, Inc.
 B. Heating Elements: Steel, welded and formed into flat, square, steel header with minimum
 thickness of 0.109 inches. Include threaded piping and air vent connections.
 1. Working Pressure 56 psig: 0.048 inch.
C. Mounting: Wall brackets or mullion mounting brackets on maximum spacing of 84 inches.

D. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.

E. Accessories:
 1. Steel piping covers finished to match radiator finish.
 2. Flexible Expansion Compensation Hoses: Minimum 400-psig (2758-kPa) working pressure, and operating temperatures from 33 to 211 deg F (0.5 to 99.5 deg C).
 a. Length: 24 inches (600 mm).
 b. Minimum Diameter: Equal to connection size.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas to receive convection heating units for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for hydronic-piping connections to verify actual locations before convection heating unit installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 FLAT-PIPE STEEL RADIATOR INSTALLATION

A. Install units level and plumb.

B. Install expansion compensation hoses.

C. Install piping covers.

3.03 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect hot-water units and components to piping according to Division 23 Section "Hydronic Piping."
 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.

C. Install control valves as required by Division 23 Section "Instrumentation and Control for HVAC."

D. Install piping adjacent to convection heating units to allow service and maintenance.

3.04 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper convection heating unit operation.

3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace convection heating units that do not pass tests and inspections and retest as specified above.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section Includes:
 1. Propeller unit heaters with hot-water coils.

1.03 DEFINITIONS
 A. BAS: Building automation system.
 B. CWP: Cold working pressure.
 C. PTFE: Polytetrafluoroethylene plastic.
 D. TFE: Tetrafluoroethylene plastic.

1.04 SUBMITTALS
 A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
 B. LEED Submittal:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."

1.05 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. PROPELLER UNIT HEATERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Airtherm; a Mestek Company.
 3. Sterling; a Mestek Company.
 4. Trane.

B. Description: An assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louvers.

C. Comply with UL 2021.

D. Comply with UL 823.

E. Cabinet: Removable panels for maintenance access to controls.

F. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.

G. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

H. Discharge Louver: Adjustable fin diffuser.

I. General Coil Requirements: Test and rate hot-water propeller unit heater coils according to ASHRAE 33.

J. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.

K. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

L. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Motor Type: Permanently lubricated.

M. Control Devices:
 1. Unit-mounted fan-speed switch.
 2. Unit-mounted thermostat.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for piping and electrical connections to verify actual locations before unit heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Division 07 Section "Joint Sealants."

B. Install propeller unit heaters level and plumb.

C. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Comply with safety requirements in UL 1995.

D. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of unit heater. Hydronic specialties are specified in Division 23 Section "Hydronic Piping."

E. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
B. Remove and replace malfunctioning units and retest as specified above.

3.05 ADJUSTING

A. Adjust initial temperature set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.06 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 23 83 16
RADIANT-HEATING HYDRONIC PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes radiant heating piping, including pipes, fittings, and piping specialties.

1.03 DEFINITIONS
A. PEX: Crosslinked polyethylene.

1.04 SUBMITTALS
A. Product Data: For each type of radiant heating pipe, fitting, manifold, specialty, and control.
 1. For radiant heating piping and manifolds, include pressure and temperature rating, oxygen-barrier performance, fire-performance characteristics, and water flow and pressure drop characteristics.

B. Shop Drawings: Show piping layout and details drawn to scale, including valves, manifolds, controls, and support assemblies, and their attachments to building structure.
 1. Shop Drawing Scale: 1/4 inch = 1 foot.

C. Operation and Maintenance Data: For radiant heating piping valves and equipment to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.01 PEX PIPE AND FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. FlorHeat Company (The).
 2. HeatLink USA Inc.
 3. Infloor Radiant Heating Inc.
 4. IPEX Inc.
 5. REHAU.
 6. Slant/Fin Corp.
 7. Stadler-Viega.
 8. Uponor Wirsbo Co.
 10. Warmboard, Inc.
12. Zurn Plumbing Products Group.

B. Pipe Material: PEX-A plastic according to ASTM F 876.

C. Oxygen Barrier: Limit oxygen diffusion through the tube to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.

D. Fittings: ASTM F 1807, metal insert and copper crimp rings.

E. Pressure/Temperature Rating: Minimum 100 psig and 180 deg F.

2.02 DISTRIBUTION MANIFOLDS

A. Manifold: Minimum NPS 1, copper.

B. Main Shutoff Valves:
 1. Factory installed on supply and return connections.
 2. Two-piece body.
 3. Body: Brass or bronze.
 4. Ball: Chrome-plated bronze.
 5. Seals: PTFE.
 7. Maximum Operating Temperature: 225 deg F.

C. Manual Air Vents:
 1. Body: Bronze.
 2. Internal Parts: Nonferrous.
 3. Operator: Key furnished with valve, or screwdriver bit.
 4. Inlet Connection: NPS 1/2.
 7. Maximum Operating Temperature: 225 deg F.

D. Balancing Valves:
 1. Body: Plastic or bronze, ball or plug, or globe cartridge type.
 2. Ball or Plug: Brass or stainless steel.
 4. Seat: PTFE.
 7. Handle Style: Lever or knob, with memory stop to retain set position if used for shutoff.
 8. CWP Rating: Minimum 125 psig.
 9. Maximum Operating Temperature: 250 deg F.
E. Zone Control Valves:
1. Body: Plastic or bronze, ball or plug, or globe cartridge type.
2. Ball or Plug: Brass or stainless steel.
4. Seat: PTFE.
5. Actuator: Replaceable electric motor.
7. Maximum Operating Temperature: 250 deg F.

F. Thermometers:
1. Mount on supply and return connections.
2. Case: Dry type, metal or plastic, 2-inch diameter.
3. Element: Bourdon tube or other type of pressure element.
4. Movement: Mechanical, connecting element and pointer.
9. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem.
10. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

G. Mounting Brackets: Copper, or plastic or copper-clad steel, where in contact with manifold.

2.03 PIPING SPECIALTIES

A. Cable Ties:
1. Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
3. Tensile Strength: 20 lb, minimum.
4. Temperature Range: Minus 40 to plus 185 deg F.

2.04 CONTROLS

A. Temperature-control devices and sequence of operations are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls."

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine surfaces and substrates to receive radiant heating piping for compliance with requirements for installation tolerances and other conditions affecting performance.
1. Ensure that surfaces and pipes in contact with radiant heating piping are free of burrs and sharp protrusions.
2. Ensure that surfaces and substrates are level and plumb.
3. Proceed with installation only after unsatisfactory conditions have been corrected.
3.02 APPLICATIONS

A. Install the following types of radiant heating piping for the applications described:
 1. Piping in Interior Reinforced-Concrete Floors: PEX.

3.03 INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop or Coordination Drawings.

B. Install radiant heating piping continuous from the manifold through the heated panel and back to the manifold without piping joints in heated panels.

C. Connect radiant piping to manifold in a reverse-return arrangement.

D. Do not bend pipes in radii smaller than manufacturer's minimum bend radius dimensions.

E. Install manifolds in accessible locations, or install access panels to provide maintenance access as required in Division 08 Section "Access Doors and Frames."

F. Refer to Division 23 Section "Hydronic Piping" for pipes and connections to hydronic systems and for glycol-solution fill requirements.

G. Fire- and Smoke-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials according to Division 07 Section "Penetration Firestopping."

H. Piping in Interior Reinforced-Concrete Floors:
 1. Secure piping in concrete floors by attaching pipes to reinforcement using cable ties.
 2. Space cable ties a maximum of 18 inches o.c., and at center of turns or bends.
 3. Maintain 2-inch minimum cover.
 4. Install a sleeve of 3/8-inch-thick, foam-type insulation or PE pipe around tubing and extending for a minimum of 10 inches on each side of slab joints to protect the tubing passing through expansion or control joints. Anchor sleeve to slab form at control joints to provide maximum clearance for saw cut.
 5. Maintain minimum 40-psig pressure in piping during concrete placement and continue for 24 hours after placement.

I. Revise locations and elevations from those indicated as required to suit field conditions and ensure integrity of piping and as approved by Architect.

J. After system balancing has been completed, mark balancing valves to permanently indicate final position.
K. Perform the following adjustments before operating the system:
 1. Open valves to fully open position.
 2. Check operation of automatic valves.
 3. Set temperature controls so all zones call for full flow.
 4. Purge air from piping.

L. After the concrete heating panel has cured as recommended by concrete supplier, operate radiant heating system as follows:
 1. Start system heating at a maximum of 10 deg F above the ambient radiant panel temperature, and increase 10 deg F each following day until design temperature is achieved.

3.04 FIELD QUALITY CONTROL

A. Prepare radiant heating piping for testing as follows:
 1. Open all isolation valves and close bypass valves.
 2. Open and verify operation of zone control valves.
 3. Flush with clean water, and clean strainers.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Subject piping to hydrostatic test pressure that is not less than 1.5 times the design pressure but not more than 100 psig. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning radiant heating piping components that do not pass tests, and retest as specified above.

D. Prepare a written report of testing.

END OF SECTION
SECTION 23 84 13

HUMIDIFIERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following humidifiers:
 1. Self-contained humidifiers.

1.03 DEFINITION

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or
 for remote-control, signaling power-limited circuits.

1.04 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and
 accessories.

B. Shop Drawings: Detail fabrication and installation of humidifiers. Include piping details, plans,
 elevations, sections, details of components, manifolds, and attachments to other work.

C. Operation and Maintenance Data: For humidifiers to include in operation and maintenance
 manuals.

1.05 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for
 intended use.

B. Comply with ARI 640, "Commercial and Industrial Humidifiers."

1.06 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged
 with protective covering for storage and identified with labels describing contents.
 1. Supply one replacement electrode cylinder with each self-contained humidifier.
 2. Supply three replacement sets of ionic bed media with each self-contained humidifier.
1.07 COORDINATION

A. Coordinate location and installation of humidifiers with manifolds in ducts. Revise locations and elevations to suit field conditions and to ensure proper humidifier operation.

PART 2 - PRODUCTS

2.01 SELF-CONTAINED HUMIDIFIERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Hygromatik; Spirax Sarco, Inc.
 3. Nortec Industries Inc.

C. Electrode Cylinder: Replaceable plastic assembly with disposable ionic bed inserts. Comply with UL 499.

D. Manifold: ASTM A 666, Type 304 stainless steel tube extending the across the entire width of duct or plenum and equipped with mounting brackets on ends.

E. Discharge Nozzle and Dispersion Fan:
 1. Steam-jacketed discharge nozzle, aluminum blade propeller fan with finger guard, and single-speed motor interlocked to operate with humidifier.
 2. Fan Mounting: Above and behind discharge outlet on bracket integral to discharge outlet.

F. Control Panel:
 1. Factory-wired disconnect switch.
 2. Liquid-crystal display.
 3. Programmable Keyboard.
 4. Set-point adjustment.
 5. Warning signal indicating end of replaceable cylinder or ionic bed insert life.
 7. Diagnostic, maintenance, alarm, and status features.
 8. High-water sensor to prevent overfilling.
G. Controls:
 1. Microprocessor-based control system for modulating or cycling control, and start/stop and status monitoring for interface to central HVAC instrumentation and controls.
 2. Solenoid-fill and automatic drain valves to maintain water level and temper hot drain water.
 3. Field-adjustable timer to control drain cycle for flush duration and interval.
 4. Controls shall drain tanks if no demand for humidification for more than 72 hours.
 5. Conductivity-type level controls.

H. Accessories:
 1. Airflow switch for preventing humidifier operation without airflow.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine ducts, air-handling units, and conditions for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before humidifier installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install humidifiers with required clearance for service and maintenance. Maintain path, downstream from humidifiers, clear of obstructions as required by ASHRAE 62.1-2004.

B. Seal humidifier manifold duct or plenum penetrations with flange.

C. Install humidifier manifolds in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."

D. Install stainless-steel drain pan under each manifold mounted in duct.
 2. Connect to condensate trap and drainage piping.
 3. Extend drain pan upstream and downstream from manifold a minimum distance recommended by manufacturer but not less than required by ASHRAE 62.1-2004.

E. Install manifold supply piping pitched to drain condensate back to humidifier.

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 1. Install piping adjacent to humidifiers to allow service and maintenance.
2. Install shutoff valve, strainer, backflow preventer, and union in humidifier makeup line.

B. Install electrical devices and piping specialties furnished by manufacturer but not factory mounted.

C. Install piping from safety relief valves to nearest floor drain.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.05 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain humidifiers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
SECTION 25 95 00

BUILDING AUTOMATION SYSTEM COMMISSIONING

PART 1 GENERAL

1.01 DESCRIPTION

A. The purpose of this section is to specify the Contractor’s responsibilities and participation in the commissioning process.

B. Commissioning testing shall be performed by the Contractor under the direction of the Commissioning Authority (CxA). Commissioning is primarily the responsibility of the CxA, with start-up, testing and support for commissioning the responsibility of the Contractors. The commissioning process does not relieve the Contractor from participation in the process or diminish the role and obligations to complete all portions of work in a satisfactory and fully operational manner.

C. Work of Division 25 includes:
 1. Testing and start-up of the equipment including completed control systems, point-to-point verification of all system inputs and outputs, calibration checks and accurate system graphics.
 2. Providing qualified personnel for participation in commissioning tests, including seasonal testing required after the initial commissioning.
 3. Providing training to the CxA on basic operation of the control system along with appropriate personal access for commissioning.
 4. Fulfilling contract and warranty requirements by providing equipment, software, software programming materials and labor necessary to correct deficiencies found during the commissioning process.
 5. Completion and endorsement of Pre-functional Test Forms provided by the CxA to assure that Division 25 equipment and systems are fully operational and ready for functional testing.
 6. Providing operation and maintenance information and as-built drawings to the CxA for review, verification and organization, prior to final distribution.
 7. Providing assistance to the CxA to develop, edit and document system operation descriptions. Incorporate correct and final control sequence documentation on control drawings.
 8. Providing training for the systems specified in this Division to the Owner.

1.02 RELATED WORK

A. All installation, testing and start-up procedures and documentation requirements specified within Division 1, and 22 through 26 and related portions of this project.
PART 2 PRODUCTS

2.01 TEST EQUIPMENT

A. This Contractor shall provide all equipment, software and all test programming support as necessary to start up, calibrate, debug and verify proper function of the control/facility management system. This equipment and software shall be provided for use by both the test and balance Contractor and the CxA at no additional charge to the project.

B. Proprietary test equipment, including hardware, software and specialized test instruments, required by the manufacturer for system testing and commissioning, whether specified or not, shall be provided by the control system contractor at no additional charge to the project. This Contractor shall provide the test equipment, demonstrate its use and assist the CxA in the commissioning process.

C. This Contractor shall provide remote access to the Building Automation System (BAS) to the CxA, if the BAS is equipped with remote access capability.

PART 3 EXECUTION

3.01 WORK PRIOR TO COMMISSIONING

A. Complete all phases of work so the system can be started, tested, balanced and commissioned for beneficial use by the Owner. Division 25 has primary start-up responsibilities with obligations to complete systems, including all sub-systems, so they are functional. This includes the complete installation, checkout and calibration of all sensor-controlled device, equipment, materials, wire, controls, software, etc., per the Contract Documents and related directives, clarifications, change orders, etc.

B. A Commissioning Plan will be developed by the CxA. Upon request of the CxA, this Contractor shall provide assistance and consultation. The Commissioning Plan will be developed prior to completion of the installation. This Contractor is obligated to assist the CxA in preparing the Commissioning Plan by providing all necessary information pertaining to the actual equipment and installation.

C. If Contractor-initiated system changes have been made that alter the commissioning process, the CxA will notify the A/E and the Contractor may be obligated to compensate the CxA to test the revised product, or confirm the suitability/unsuitability of the substitution or revision.

D. Specific pre-commissioning responsibilities of Division 25 are as follows:
 1. Provide factory-trained technician(s) for start-up, checkout and calibration services for all systems to be commissioned.
 2. The Contractor shall complete the Pre-functional Test Forms on the systems to be commissioned to verify that all aspects of the work are complete in
3.02 SYSTEMS TO BE COMMISSIONED

A. Equipment and devices included in the commissioning process include:
 1. Sensors
 2. Controlled devices
 3. Stand-alone or packaged controls
 4. Local loop control panels
 5. Network controllers
 6. Field interface panels
 7. Operator interface/graphics software and terminals
 8. Central processing units
 9. Printers
 10. Basic software routines
 11. Software loop tuning

3.03 PARTICIPATION IN COMMISSIONING

A. Commissioning testing shall be performed by the Contractor under the direction of the Commissioning Authority (CxA). Provide skilled technicians to start up and debug all systems within this division of work. These same technicians shall be made available to assist the CxA in completing the commissioning program as it relates to each system and their technical specialty. Work schedules, time required for testing, etc., will be requested by the CxA and coordinated by the Contractor. Contractor will ensure the qualified technician(s) are available and present during the agreed-upon schedules and of sufficient duration to complete the necessary tests, adjustments and/or problem resolutions.
B. System problems and discrepancies may require additional technician time, CxA time, redesign and/or reconstruction of systems and system components. The additional technician time shall be made available for the subsequent commissioning periods until the required system performance is obtained.

C. The CxA reserves the right to judge the appropriateness and qualifications of the technicians relative to each item of equipment, system and/or sub-system. Qualifications of technicians include expert knowledge relative to the specific equipment involved, adequate documentation and tools to service/commission the equipment and an attitude/willingness to work with the CxA to get the job done. A liaison or intermediary between the CxA and qualified factory representatives does not constitute the availability of a qualified technician for purpose of this work.

3.04 WORK TO RESOLVE DEFICIENCIES

A. In some systems, maladjustments, misapplied equipment, and/or deficient performance under varying loads will result in a system that does not meet the original design intent. Correction of work will be completed under direction of the A/E, with input from the Contractor, equipment supplier and CxA. Whereas all members will have input and the opportunity to discuss, debate and work out problems, the A/E will have final jurisdiction on the necessary work to be done to achieve performance.

B. Corrective work shall be completed in a timely fashion to permit the timely completion of the commissioning process. Experimentation to render system performance will be permitted. If the CxA deems the experimentation work to be ineffective or untimely to the commissioning process, the CxA will notify the A/E indicating the nature of the problem, expected steps to be taken and the deadline for completion of activities. If the deadline passes without resolution of the problem, the Owner reserves the right to obtain supplementary services and equipment to resolve the problem. Costs incurred to solve the problems in an expeditious manner will be the Contractor’s responsibility.

3.05 ADDITIONAL COMMISSIONING

A. Additional commissioning activities may be required after system adjustments, replacements, etc., are completed. The Contractor, suppliers and CxA shall include a reasonable reserve to complete this work as part of their standard contractual obligations.

B. The cost of compensation of the CxA for repeat testing or troubleshooting due to systems that do not meet specified performance shall be borne by the Contractor.

3.06 SEASONAL COMMISSIONING AND OCCUPANCY VARIATIONS

A. Seasonal commissioning pertains to testing under full-load conditions during peak heating and peak cooling seasons, as well as part-load conditions in the spring and fall. Initial commissioning will be done as soon as contract work is completed, regardless of season. Subsequent commissioning may be undertaken at any time thereafter to ascertain adequate performance during the different seasons.
B. All equipment and systems will be tested and commissioned in a peak season to observe full-load performance. Heating equipment will be tested during winter design extremes. Cooling equipment will be tested during summer design extremes, with a fully occupied building. Each Contractor and supplier will be responsible to participate in the initial and the alternate peak season test of the systems required to demonstrate performance.

C. Subsequent commissioning may be required under conditions of minimum and/or maximum occupancy or use. All equipment and systems affected by occupancy variations will be tested and commissioned at the minimum and peak loads to observe system performance. Each Contractor and supplier will be responsible to participate in the occupancy sensitive testing of systems to provide verification of adequate performance.

3.07 POST-OCCUPANCY REVIEW

A. Subsequent commissioning will be required approximately 10 months after substantial completion of the project. The facility operation will be reviewed using BAS trend data, limited functional testing and interviews with the O&M staff and occupants. The Contractor will assist the post-occupancy review by setting up BAS data trends, downloading those trends and assisting with functional testing as needed. The commissioning activities may identify items for correction by the contractor.

3.08 TRAINING

A. A training session, before functional testing starts, shall be conducted with sufficient detail and duration to give the CxA’s staff a complete working knowledge of the control/facility automation system. This training shall provide all necessary software, passwords, reference materials and/or proprietary hardware necessary to allow the CxA’s staff to interrogate all points of the control/facility automation system, view all installed software routines, temporarily override all setpoints, on status and values and trend/log any available data. It is understood that the CxA will use this system access for testing purposes only and will return all overridden values to their previous state.

B. This Contractor will be required to participate in the training of the Owner’s engineering and maintenance staff for the control systems and the related components. Training may be conducted in a classroom setting, with applicable documentation and suitable training aids, or in the field with the specific equipment or both, at the Owner’s option.

C. Training may be conducted jointly with the CxA, the design engineers, the equipment vendors and the Contractor. This Contractor will be responsible for generic training, as well as instructing the Owner’s staff on the system peculiarities specific to this project.

3.09 SYSTEMS DOCUMENTATION

A. In addition to the requirements of Division 1, update Contract Documents to incorporate field changes and revisions to system designs to account for actual constructed configurations. All drawings shall be red-lined on two (2) sets. Division 25
as-built drawings shall include updated architectural floor plans and the individual electrical systems in relation to actual building layout.

B. Maintain as-built red-lines on the job site as required in Division 1. Given the size and complexity of this project, red-lining of the drawings at completion of construction based on memory of key personnel is not satisfactory. Continuous and regular red-lining and/or posting of drawings is considered essential and mandatory.

C. In addition to the stated requirements for operation and maintenance data, provide one (1) copy of equipment technical literature, operation and maintenance literature and shop drawings to the CxA as soon as they are available. This requirement is for review of these documents prior to distribution of multiple copies for the Owner’s final use.

3.10 SOFTWARE

D. This Contractor shall supply the CxA with two debugged printouts of all facility management systems software, including all user programming and engineering manuals required to interpret the software. Included in the printouts, though not limited to, shall be the following:
 1. Point data base
 2. All custom control programs written in the BAS control language
 3. All parameters required for proper operation of BAS control and utility firmware such as start/stop routines, etc.
 4. System graphics

E. The software printout shall be fully documented for ease of interpretation by the CxA and Owner, without assistance from the Contractor. English language descriptions shall be either integrated with or attached to the BAS printout. The following shall be specifically documented:
 1. All point names, I/O and virtual.
 2. All BAS programming language commands, functions, syntax, operators and reserved variables.
 3. Use of all BAS firmware.
 4. The intended actions, decisions and calculations for each line or logical group of lines in the custom control programs. Sequences of operation alone are not sufficient.
 5. Complete descriptions of and theories explaining all software and firmware algorithms, including but not limited to: PID, optimum start/stop, demand limiting and chiller and boiler optimization.
 6. A table of contents to the documentation that locates the sections of the documentation and describes which programs or program sections are for each piece of controlled/monitored equipment.
 7. Flow charts using IEEE symbol nomenclature that demonstrates the software's algorithms and flow logic.

END OF SECTION